×

A study on generalized fourth-order Jacobsthal sequences. (English) Zbl 1504.11049


MSC:

11B83 Special sequences and polynomials
11B39 Fibonacci and Lucas numbers and polynomials and generalizations

Software:

OEIS

References:

[1] Aydın, F.T., On generalizations of the Jacobsthal sequence, Notes on Number Theory and Discrete Mathematics, 24(1), 120-135, 2018.
[2] Akbulak M., Öteleş A., On the Sum of Pell and Jacobsthal Numbers by Matrix Method, Bull. Iranian Mathematical Society. 40(4), 1017-1025, 2014. · Zbl 1337.15010
[3] Catarino, P., Vasco, P., Campos, A.P.A., Borges, A., New families of Jacobsthal and Jacobsthal-Lucas numbers, Al-gebra and Discrete Mathematics,20(1), 40-54, 2015. · Zbl 1343.11019
[4] Cerda-Morales, G., A Note On Modified Third-Order Jacobsthal Numbers, arXiv:1905.00725v1.
[5] Cerda-Morales G., On fourth-order jacobsthal quaternions, Journal of Mathematical Sciences and Modelling, 1 (2), 73-79, 2018.
[6] Cerda-Morales G., On the Third-Order Jacobsthal and Third-Order Jacobsthal-Lucas Sequences and Their Matrix Representations, Mediterranean Journal of Mathematics, Mediterr. J. Math. (2019) 16:32 https://doi.org/10.1007/s00009-019-1319-9 1660-5446/19/020001-12, 2019. · Zbl 1439.11037 · doi:10.1007/s00009-019-1319-91660-5446/19/020001-12
[7] Cerda-Morales G., Third-Order Jacobsthal Generalized Quaternions, SCImago Journal & Country Rank, 50, 1-100, 2018.
[8] Cerda-Morales G., The Third Order Jacobsthal Octonions: Some Combinatorial Properties, An. St. Univ. Ovidius Constanta, 26(3), 57-71, 2018. · Zbl 1438.11032
[9] Cerda-Morales G., Identities for Third Order Jacobsthal Quaternions, Advances in Applied Clifford Algebras, 27, 1043-1053, 2017. · Zbl 1420.11032
[10] Čerin, Z., Formulae for sums of Jacobsthal-Lucas numbers, Int. Math. Forum, 2(40), 1969-1984, 2007. · Zbl 1195.11020
[11] Čerin, Z., Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequences, 10, Article 07.2.5, 2007. · Zbl 1116.11010
[12] Cook C. K., Bacon, M. R., Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae, 41, 27-39, 2013. · Zbl 1274.11028
[13] Dasdemir A., On The Jacobsthal Numbers By Matrix Method. SDU Journal of Science, 7(1), 69-76, 2012.
[14] Daşdemir, A., A study on the Jacobsthal and Jacobsthal-Lucas numbers by matrix method, DUFED Journal of Sciences, 3(1), 13-18, 2014.
[15] Gnanam, A., Anitha, B., Sums of Squares Jacobsthal Numbers. IOSR Journal of Mathematics, 11(6), 62-64. 2015.
[16] Hathiwala, G. S., Shah, D. V., Binet-Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods, Mathematical Journal of Interdisciplinary Sciences 6(1), 37-48, 2017.
[17] Horadam, A.F., Jacobsthal Representation Numbers, Fibonacci Quarterly, 34, 40-54, 1996. · Zbl 0869.11013
[18] Horadam, A.F., Jacobsthal and Pell Curves, Fibonacci Quarterly, 26, 77-83, 1988. · Zbl 0644.10014
[19] Kalman, D., Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quart., 20(1), 73-76, 1982. · Zbl 0472.10016
[20] Kilic, E., Stanica P., A matrix approach for general higher order linear recurrences, Bulletin of the Malaysian Math-ematical Sciences Society, 34(1), 51-67, 2011. · Zbl 1246.11027
[21] Kocer, G.E., Circulant, Negacyclic and Semicirculant Matrices With the Modified Pell, Jacobsthal and Jacobsthal-Lucas Numbers, Hacettepe Journal of Mathematics and Statistics, 36(2). 133-142, 2007. · Zbl 1147.15014
[22] Köken, F., Bozkurt, D., On the Jacobsthal numbers by matrix methods, Int. J. Contemp Math. Sciences, 3(13), 605-614, 2008. · Zbl 1221.11041
[23] Mazorchuk V. New Families of Jacobsthal and Jacobsthal-Lucas Numbers. Algebra and Discrete Mathematics. Vol. 20. No 1. 40-54. 2015. · Zbl 1343.11019
[24] Melham, R. S., Some Analogs of the Identity F 2 n + F 2 n+1 = F 2 2n+1 , Fibonacci Quarterly, 305-311, 1999. · Zbl 0939.11011
[25] Natividad, L. R., On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International Journal of Mathematics and Computing, 3(2), 2013.
[26] Polatlı, E.E., Soykan, Y., On Generalized Third-Order Jacobsthal Numbers, Asian Research Journal of Mathemat-ics, 17(2), 1-19, 2021. DOI: 10.9734/ARJOM/2021/v17i230270 · doi:10.9734/ARJOM/2021/v17i230270
[27] Singh, B., Bhadouria, P., Sikhwal, O., Sisodiya, K., A Formula for Tetranacci-Like Sequence, Gen. Math. Notes, 20 (2), 136-141, 2014.
[28] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/ · Zbl 1274.11001
[29] Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, International Journal of Advances in Ap-plied Mathematics and Mechanics, 7(2), 45-56, 2019. · Zbl 1465.11066
[30] Soykan, Y., Gaussian Generalized Tetranacci Numbers, Journal of Advances in Mathematics and Computer Sci-ence, 31(3): 1-21, Article no.JAMCS.48063, 2019.
[31] Soykan, Summation Formulas For Generalized Tetranacci Numbers, Asian Journal of Advanced Research and Reports, 7(2), 1-12, 2019. doi.org/10.9734/ajarr/2019/v7i230170. · doi:10.9734/ajarr/2019/v7i230170
[32] Soykan, Y., Polatlı, E.E., A Note on Fifth Order Jacobsthal Numbers, IOSR Journal of Mathematics (IOSR-JM), 17(2), 01-23, 2021. DOI: 10.9790/5728-1702010123 · doi:10.9790/5728-1702010123
[33] Soykan, Y., Polatlı, E.E., On Generalized Sixth-Order Jacobsthal Sequence, Int. J. Adv. Appl. Math. and Mech. 8(3), 24-40, 2021. · Zbl 1504.11029
[34] Srividhya, G., Ragunathan, T., k-Jacobsthal and k-Jacobsthal Lucas Numbers and their Associated Numbers, In-ternational Journal of Research in Advent Technology, 7(1), 2019.
[35] Waddill, M. E., Another Generalized Fibonacci Sequence, M. E., Fibonacci Quarterly, 5(3), 209-227, 1967. · Zbl 0154.04103
[36] Waddill, M. E., The Tetranacci Sequence and Generalizations, Fibonacci Quarterly, 9-20, 1992. · Zbl 0748.11014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.