×

Nakayama closures, interior operations, and core-hull duality – with applications to tight closure theory. (English) Zbl 1504.13030

The results in the paper mostly concern modules over commutative rings, but some hold for non-commutative rings also. Rings with special properties are utilized in different contexts.
The springboard seems to be a 2021 paper by the first two authors, where a number of notions had been defined ([N. Epstein and R. R. G., Rocky Mt. J. Math. 51, No. 3, 823–853 (2021; Zbl 1477.13047)]). All the terminology used may be found in the paper under review. The authors prove that the interiors of ideals may be computed in Noetherian local rings (that are approximately Gorenstein) using the dual closure and colons; they show that, in case of Gorenstein rings, if parameter ideals are cl-closed, then all ideals are cl-closed. It is shown that a number of module and algebra closures are Nakayama. Nakayama closures are shown to be dual to Nakayama interiors. A number of constructs are defined and examined, such as i-expansions, finite co-generation, minimal co-generating sets, maximal expansions and the core-hull duality. Related closures and interiors are compared, the co-spread is defined as a dual spread and it is shown that liftable integral spreads exist.
For a taste of the results we quote the following Theorem 8.1: Assume that (\(R, \mathfrak{m}\)) is a complete reduced \(F\)-finite local ring and \(I\) is an ideal of \(R\). Assume also that either of the following two conditions hold:
1.
There is a positively graded \(\mathbb{N}\)-graded algebra \(A\) over a field \(K\), with graded maximal ideal \(\mathfrak{n}\), and a homogeneous ideal \(J\) of \(A\), such that \(R=\hat A_\mathfrak{n}\) and \(I=JR\), or
2.
\(R\) is an isolated singularity.
Then, the tight interior of \(I\) and the Artinistic version of the tight interior of \(I\) coincide. This (and other) result is then used to compute some examples of tight and Frobenius interiors and hulls.

MSC:

13J10 Complete rings, completion
13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
13B22 Integral closure of commutative rings and ideals
13C60 Module categories and commutative rings

Citations:

Zbl 1477.13047
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, Number 39
[2] Corso, A.; Polini, C.; Ulrich, B., The structure of core of ideals, Math. Ann., 321, 89-105 (2001) · Zbl 0992.13003
[3] Corso, A.; Polini, C.; Ulrich, B., Core and residual intersections of ideals, Trans. Am. Math. Soc., 354, 2579-2594 (2002) · Zbl 1013.13001
[4] Corso, A.; Polini, C.; Ulrich, B., Core of projective dimension one modules, Manuscr. Math., 321, 427-433 (2003) · Zbl 1029.13013
[5] Eisenbud, D.; Huneke, C.; Ulrich, B., What is the Rees algebra of a module?, Proc. Am. Math. Soc., 131, 701-708 (2003) · Zbl 1038.13002
[6] Enescu, F.; Hochster, M., The Frobenius structure of local cohomology, Algebra Number Theory, 2, 721-754 (2008) · Zbl 1190.13003
[7] Epstein, N., A tight closure analogue of analytic spread, Math. Proc. Camb. Philos. Soc., 139, 371-383 (2005) · Zbl 1091.13008
[8] Epstein, N., Reductions and special parts of closures, J. Algebra, 323, 2209-2225 (2010) · Zbl 1243.13002
[9] Epstein, N., A guide to closure operations in commutative algebra, (Francisco, C.; Klingler, L.; Sather-Wagstaff, S.; Vassilev, J. C., Progress in Commutative Algebra 2 (2012), De Gruyter: De Gruyter Berlin/Boston), 1-37 · Zbl 1244.13001
[10] Epstein, N.; R. G., R., Closure-interior duality over complete local rings, Rocky Mt. J. Math., 51, 823-853 (2021) · Zbl 1477.13047
[11] Epstein, N.; Schwede, K., A dual to tight closure theory, Nagoya Math. J., 213, 41-75 (2014) · Zbl 1315.13016
[12] Epstein, N.; Ulrich, B., Liftable integral closure, J. Commut. Algebra (2022), in press
[13] Fedder, R., F-purity and rational singularity, Trans. Am. Math. Soc., 278, 461-480 (1983) · Zbl 0519.13017
[14] Fedder, R.; Watanabe, K., A characterization of f-regularity in terms of f-purity, (Commutative Algebra. Commutative Algebra, Berkeley, CA, 1987 (1989), Springer: Springer New York), 215-227 · Zbl 0738.13004
[15] Fouli, L., Computing the core of ideals in arbitrary characteristic, J. Algebra, 319, 2855-2867 (2008) · Zbl 1140.13007
[16] Fouli, L.; Polini, C.; Ulrich, B., The core of ideals in arbitrary characteristic, Mich. Math. J., 57, 305-319 (2008) · Zbl 1183.13004
[17] Fouli, L.; Vassilev, J. C., The cl-core of an ideal, Math. Proc. Camb. Philos. Soc., 149, 247-262 (2010) · Zbl 1200.13009
[18] Fouli, L.; Vassilev, J. C.; Vraciu, A., A formula for the ⁎-core of an ideal, Proc. Am. Math. Soc., 139, 4235-4245 (2011) · Zbl 1235.13001
[19] Heinzer, W. J.; Ratliff, L. J.; Rush, D. E., Basically full ideals in local rings, J. Algebra, 250, 371-396 (2002) · Zbl 1048.13001
[20] Herzog, J.; Hibi, T.; Stamate, D. I., The trace of the canonical module, Isr. J. Math., 233, 133-165 (2019) · Zbl 1428.13037
[21] Hochster, M., Foundations of tight closure theory (2007)
[22] Hochster, M.; Huneke, C., Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Am. Math. Soc., 3, 31-116 (1990) · Zbl 0701.13002
[23] Hochster, M.; Roberts, J. L., The purity of Frobenius and local cohomology, Adv. Math., 21, 117-172 (1976) · Zbl 0348.13007
[24] Huneke, C., Tight Closure and Its Applications, CBMS Reg. Conf. Ser. in Math., vol. 88 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0930.13004
[25] Huneke, C.; Swanson, I., Cores of ideals in 2-dimensional regular local rings, Mich. Math. J., 42, 193-208 (1994) · Zbl 0829.13014
[26] Huneke, C.; Swanson, I., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Ser., vol. 336 (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1117.13001
[27] Huneke, C.; Trung, N. V., On the core of ideals, Comput. Math., 141, 1-18 (2005) · Zbl 1089.13002
[28] Hyry, E.; Smith, K., On a non-vanishing conjecture of Kawamata and the core of an ideal, Am. J. Math., 125, 1349-1410 (2003) · Zbl 1089.13003
[29] Hyry, E.; Smith, K., Core versus graded core, and global sections of line bundles, Trans. Am. Math. Soc., 356, 3143-3166 (2004) · Zbl 1089.13004
[30] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189 (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0911.16001
[31] Lyubeznik, G.; Smith, K. E., Strong and weak F-regularity are equivalent for graded rings, Am. J. Math., 121, 1279-1290 (1999) · Zbl 0970.13003
[32] Lyubeznik, G.; Smith, K. E., On the commutation of the test ideal with localization and completion, Trans. Am. Math. Soc., 353, 3149-3180 (2001) · Zbl 0977.13002
[33] Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, translated from the Japanese by M. Reid · Zbl 0603.13001
[34] McDermott, M., Tight closure, plus closure and Frobenius closure in cubical cones, Trans. Am. Math. Soc., 352, 95-114 (2000) · Zbl 0940.13001
[35] Mohan, R., The core of a module over a two-dimensional regular local ring, J. Algebra, 189, 1-22 (1997) · Zbl 0897.13010
[36] Pérez, F.; R. G., R., Characteristic-free test ideals, Trans. Am. Math. Soc. Ser. B, 8, 754-787 (2021) · Zbl 1487.13024
[37] Polini, C.; Ulrich, B., A formula for the core of an ideal, Math. Ann., 331, 487-583 (2005) · Zbl 1089.13005
[38] Rees, D.; Sally, J. D., General elements and joint reductions, Mich. Math. J., 35, 241-254 (1988) · Zbl 0666.13004
[39] R. G., R., Closure operations that induce big Cohen-Macaulay modules and classification of singularities, J. Algebra, 467, 237-267 (2016) · Zbl 1401.13031
[40] Vámos, P., The dual of the notion of “finitely generated”, J. Lond. Math. Soc., 43, 643-646 (1968) · Zbl 0164.04003
[41] Vassilev, J., \( \mathfrak{m} \)-full and basically full ideals in rings of characteristic p, Rocky Mt. J. Math., 44, 691-704 (2014) · Zbl 1308.13009
[42] J. Vassilev, 2020, *-interiors and related ideals, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.