×

Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration. (Russian. English summary) Zbl 1505.93110

Summary: The article is devoted to studying the problem of boundary control and final observation for a degenerate mathematical model of non-linear filtration, based on the Oskolkov equation, with the initial condition of Showalter-Sidorov. This model belongs to the class of semilinear models of the Sobolian type, in which the nonlinear operator is \(p\)-coercive and \(s\)-monotonic. The paper for the first time considers the problem of boundary control and final observation for the semilinear model of the Sobolian type and establishes the conditions of the existence of the control-state pair of the matter being studied.

MSC:

93C20 Control/observation systems governed by partial differential equations
93E11 Filtering in stochastic control theory
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI MNR

References:

[1] A.P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya nelineinykh vyazkouprugikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 17, Zap. nauchn. sem. LOMI, 147, 1985, 110-119 · Zbl 0579.76011
[2] V.B. Amfilokhiev, Ya.I. Voitkunskii, N.P. Mazaeva, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Trudy Leningradskogo korablestroitelnogo instituta, 96 (1975), 3-9
[3] G.A. Sviridyuk, V.O. Kazak, “Fazovoe prostranstvo odnoi obobschennoi modeli Oskolkova”, Sibirskii matematicheskii zhurnal, 44:5 (2003), 1124-1131 · Zbl 1049.35148
[4] L.A. Kovaleva, A.S. Konkina, S.A. Zagrebina, “Stochastic Barenblatt-Zheltov-Kochina Model with Neumann Condition and Multipoint Initial-Final Value Condition”, Journal of Computational and Engineering Mathematics, 9:1 (2022), 24-34 · Zbl 1513.60083 · doi:10.14529/jcem220103
[5] N.A. Manakova, “Matematicheskie modeli i optimalnoe upravlenie protsessami filtratsii i deformatsii”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 5-24 · Zbl 1339.35148
[6] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 367 pp.
[7] G.A. Sviridyuk, I.N. Semenova, “Razreshimost neodnorodnoi zadachi dlya obobschennogo filtratsionnogo uravneniya Bussineska”, Differentsialnye uravneniya, 24:9 (1988), 1607-1611 · Zbl 0672.76099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.