×

Chebyshev polynomials and \(r\)-circulant matrices. (English) Zbl 1510.11059

Summary: This paper connects two attractive topics in applied mathematics, \(r\)-circulant matrices and the Chebyshev polynomials. The \(r\)-circulant matrices whose entries are the Chebyshev polynomials of the first or second kind are considered. Then, estimates for spectral norm bounds of such matrices are presented. The relevance of the obtained results was verified by applying them to some of the previous results on \(r\)-circulant matrices involving various integer sequences. The acquired results justify the usefulness of the applied approach.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
15B05 Toeplitz, Cauchy, and related matrices
11B83 Special sequences and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Software:

PyG; SplineCNN
Full Text: DOI

References:

[1] Cao, W.; Yan, Z.; He, Z.; He, Z., A comprehensive survey on geometric deep learning, IEEE Access, 8, 35929-35949 (2020)
[2] Fey, M.; Lenssen, J. E.; Weichert, F.; Mȭller, H., SplineCNN: fast geometric deep learning with continuous B - spline kernels, Proceedings of the IEEE Conference on CVPR, 869-877 (2018)
[3] Monti, M.; Bronstein, M.; Bresson, X., Geometric matrix completion with recurrent multi - graph neural network, Advances in NIPS, 3700-3710 (2017)
[4] Mason, J. C.; Handscomb, D. C., Chebyshev Polynomials (2003), Chapman and Hall: Chapman and Hall New York · Zbl 1015.33001
[5] Rivlin, T. J., The Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory (1990), J.Wiley and Sons: J.Wiley and Sons New York · Zbl 0734.41029
[6] Davis, P. J., Circulant Matrices (1979), Wiley: Wiley New York · Zbl 0418.15017
[7] Gray, R. M., Toeplitz and Circulant Matrices: A Review, Tech. Rep. (1990), Stanford Univ., Information Systems Lab.
[8] Horn, R. A.; Mathias, R., An analog of the Cauchy - Schwarz inequality for Hadamard products and unitarily invariant norms, SIAM J. Matrix Anal. Appl., 11(4), 481-498 (1990) · Zbl 0722.15019
[9] 19 · Zbl 0147.02201
[10] Udrea, G., A note on the sequence \(( W_n )_{n \geq 0}\) of A.F. Horadam, Port. Math., 53, 143-155 (1996) · Zbl 0859.11013
[11] Anđelić, M.; Du, Z.; da Fonseca, C.; Kiliç, E., A matrix approach to some second - order difference equations with sign - alternating coefficients, J. Differ. Equ. Appl., 26, 149-162 (2020) · Zbl 1472.39004
[12] Fonseca, C.d., Unifying some Pell and Fibonacci identities, Appl. Math. Comput., 236, 41-42 (2014) · Zbl 1334.11009
[13] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[14] Horadam, A. F., Basic properties of a certain generalized sequence of numbers, Fibonacci Q., 3, 161-176 (1965) · Zbl 0131.04103
[15] Larcombe, P.; Bagdasar, O.; Fennessey, E., Horadam sequences: a survey, Bull. I.C.A., 67, 49-72 (2013) · Zbl 1281.11012
[16] Ait Amrane, N. R.; Gok, I.; Tan, E., Hyper - dual Horadam quaternions, Miskolc Math. Notes, 22, 2, 903-913 (2021) · Zbl 1499.11045
[17] Tan, E.; Leung, H.-H., Some results on Horadam quaternions, Chaos, Solitons Fractals, 138, 109961 (2020) · Zbl 1490.11027
[18] He, C.; Ma, J.; Zhang, K.; Wang, Z., The upper bound estimation on the spectral norm of \(r\)-circulant matrices with the Fibonacci and Lucas numbers, J. Inequal. Appl., 72 (2015) · Zbl 1314.15024
[19] Radičić, B., On \(k\)-circulant matrices involving the Pell numbers, Results Math., 74 (2019) · Zbl 1432.15026
[20] Shen, S.; Cen, J., On the bounds for the norms of \(r\)-circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 216, 2891-2897 (2010) · Zbl 1211.15029
[21] Shi, B., The spectral norms of geometric circulant matrices with the generalized \(k\)-Horadam numbers, J. Inequal. Appl., 14 (2018) · Zbl 1381.15011
[22] Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 160, 125-132 (2005) · Zbl 1066.15029
[23] Solak, S., On the spectral norm of the matrix with integer sequences, Appl. Math. Comput., 232, 919-921 (2014) · Zbl 1410.15046
[24] Türkmen, R.; Gökbaş, H., On the spectral norm of \(r\)-circulant matrices with the Pell and Pell - Lucas numbers, J. Inequal. Appl., 65 (2016) · Zbl 1382.15046
[25] Yazlik, Y.; Taskara, N., On the norms of an \(r\)-circulant matrix with the generalized \(k\)-Horadam numbers, J. Ineq. Appl., 394 (2013) · Zbl 1373.11014
[26] Horadam, A. F., Pell identities, Fibonacci Q., 9, 3, 245-252 (1971) · Zbl 0219.10018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.