Salimi, Maryam Relative tilting modules with respect to a semidualizing module. (English) Zbl 1513.13041 Czech. Math. J. 69, No. 3, 781-800 (2019). Let \(R\) be a commutative Noetherian ring with identity. Recall that a finitely generated \(R\)-module \(C\) is called semidualizing if the homothety map \(\chi_C^R:R\rightarrow\text{Hom}_R\left(C,C\right)\) is an isomorphism, and \(\text{Ext}^i_R\left(C,C\right)=0\) for all \(i>0\). Also, recall that an \(R\)-module \(T\) is said to be generalized tilting if: (i) \(\text{pd}_RT<\infty\).(ii) \(\text{Ext}_R^i(T,T^{(k)})=0\) for every cardinal \(k\) and all \(i\geq 1\).(iii) there exists an exact sequence \(0\rightarrow R\rightarrow T_0\rightarrow T_1\rightarrow\cdots\rightarrow T_r\rightarrow 0,\) where each \(T_i\) is a direct summand of a direct sum of copies of \(T\).Let \(C\) be a semidualizing module of \(R\). In this paper, the notion of \(C\)-tilting \(R\)-modules is introduced and studied. The author reveals some connections between \(C\)-tilting \(R\)-modules and (generalized) tilting \(R\)-modules. Also, she extends some properties of (generalized) tilting \(R\)-modules to \(C\)-tilting \(R\)-modules. Her definition of \(C\)-tilting \(R\)-modules and her main results require the following definitions:It is known that every \(R\)-module \(M\) admits a complex \[L^+=\cdots\rightarrow C\otimes_R P_n\rightarrow\cdots\rightarrow C\otimes_R P_0\rightarrow M\rightarrow 0\] such that every \(P_i\) is projective, and the complex \[\text{Hom}_R(C,L^+)=\cdots\rightarrow P_n\rightarrow\cdots\rightarrow P_0\rightarrow\text{Hom}_R(C,M)\rightarrow 0\] is exact. The complex \[L=\cdots\rightarrow C\otimes_R P_n\rightarrow\cdots\rightarrow C\otimes_R P_0\rightarrow 0\] is called a proper \(\mathscr{P}_C\)-projective resolution of \(M\). Let \(M\) and \(N\) be two \(R\)-modules. For each non-negative integer \(n\), the \(n\)th relative Ext module of \(M\) and \(N\) is defined by \(\text{Ext}^n_{\mathscr{P}_C}(M,N):=\text{H}_{-n}(\text{Hom}_R(L,N))\), where \(L\) is a proper \(\mathscr{P}_C\)-projective resolution of \(M\).According to the author, an \(R\)-module \(T\) is called \(C\)-tilting if: (i) \(\text{Ext}^n_{\mathscr{P}_C}(T,-)=0\) for \(n\gg 0\).(ii) \(\text{Ext}_{\mathscr{P}_C}^i(T,T^{(k)})=0\) for every cardinal \(k\) and all \(i\geq 1\).(iii) there exists an exact sequence \(0\rightarrow C\rightarrow T_0\rightarrow T_1\rightarrow\cdots\rightarrow T_r\rightarrow 0\), where each \(T_i\) is a direct summand of a direct sum of copies of \(T\). Let \(\mathcal{T}_C\left(R\right)\) stands for the full subcategory of \(C\)-tilting \(R\)-modules. It is evident that \(R\) is a semidualizing module of \(R\) and \(\mathcal{T}_R\left(R\right)\) is the class of all generalized tilting \(R\)-modules.The Auslander class \(\mathscr{A}_C\left(R\right)\) is the class of all \(R\)-modules \(M\) for which the natural map \[\gamma_M^C:M\rightarrow\text{Hom}_R\left(C,C\otimes_RM\right)\] is an isomorphism, and \[\text{Tor}^R_i\left(C,M\right)=0=\text{Ext}_R^i\left(C,C\otimes_RM\right)\] for all \(i\geq 1\). Also, the Bass class \(\mathscr{B}_C\left(R\right)\) is the class of all \(R\)-modules \(M\) for which the evaluation map \[\xi_M^C:C\otimes_R\text{Hom}_R\left(C,M\right)\rightarrow M\] is an isomorphism, and \[\text{Ext}^i_R\left(C,M\right)=0=\text{Tor}^R_i\left(C,\text{Hom}_R\left(C,M\right)\right)\] for all \(i\geq 1\).The author shows that \(\mathcal{T}_R\left(R\right)\subseteq\mathscr{A}_C\left(R\right)\), and if \(T\) is a generalized tilting \(R\)-module, then \(C\otimes_R T\) is \(C\)-tilting. Also, she proves that \(\mathcal{T}_C\left(R\right)\subseteq\mathscr{B}_C\left(R\right)\) and if \(T\) is a \(C\)-tilting \(R\)-module, then \(\text{Hom}_R(C,T)\) is a generalized tilting \(R\)-module. Reviewer: Kamran Divaani-Aazar (Tehran) MSC: 13D05 Homological dimension and commutative rings 13D45 Local cohomology and commutative rings Keywords:\(C\)-projective module; semidualizing module; tilting module PDF BibTeX XML Cite \textit{M. Salimi}, Czech. Math. J. 69, No. 3, 781--800 (2019; Zbl 1513.13041) Full Text: DOI References: [1] Avramov, L. L.; Foxby, H.-B., Ring homomorphisms and finite Gorenstein dimension, Proc. Lond. Math. Soc. III. 75 (1997), 241-270 · Zbl 0901.13011 [2] Bazzoni, S.; Mantese, F.; Tonolo, A., Derived equivalence induced by infinitely generated {\(n\)}-tilting modules, Proc. Am. Math. Soc. 139 (2011), 4225-4234 · Zbl 1232.16004 [3] Bongratz, K., Tilted algebras, Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38 · Zbl 0478.16025 [4] Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Trans. Am. Math. Soc. 353 (2001), 1839-1883 · Zbl 0969.13006 [5] Enochs, E. E.; Jenda, O. M. G., Relative Homological Algebra, Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011) · Zbl 1238.13001 [6] Foxby, H.-B., Gorenstein modules and related modules, Math. Scand. 31 (1973), 267-284 · Zbl 0272.13009 [7] Golod, E. S., \(G\)-dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66 · Zbl 0577.13008 [8] Happel, D.; Ringel, C. M., Tilted algebras, Trans. Am. Math. Soc. 274 (1982), 399-443 · Zbl 0503.16024 [9] Holm, H.; Jø{r}gensen, P., Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), 423-445 · Zbl 1094.13021 [10] Holm, H.; White, D., Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), 781-808 · Zbl 1154.16007 [11] Miyashita, Y., Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113-146 · Zbl 0578.16015 [12] Salimi, M., On relative Gorenstein homological dimensions with respect to a dualizing module, Mat. Vesnik 69 (2017), 118-125 · Zbl 1474.13031 [13] Salimi, M.; Sather-Wagstaff, S.; Tavasoli, E.; Yassemi, S., Relative Tor functors with respect to a semidualizing module, Algebr. Represent. Theory 17 (2014), 103-120 · Zbl 1295.13023 [14] Salimi, M.; Tavasoli, E.; Yassemi, S., Top local cohomology modules and Gorenstein injectivity with respect to a semidualizing module, Arch. Math. 98 (2012), 299-305 · Zbl 1246.13021 [15] Sather-Wagstaff, S., Semidualizing Modules, Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf · Zbl 1282.13021 [16] Sather-Wagstaff, S.; Sharif, T.; White, D., Comparison of relative cohomology theories with respect to semidualizing modules, Math. Z. 264 (2010), 571-600 · Zbl 1190.13007 [17] Takahashi, R.; White, D., Homological aspects of semidualizing modules, Math. Scand. 106 (2010), 5-22 · Zbl 1193.13012 [18] Tang, X., New characterizations of dualizing modules, Commun. Algebra 40 (2012), 845-861 · Zbl 1246.13022 [19] Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974) · Zbl 0296.13005 [20] White, D., Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), 111-137 · Zbl 1237.13029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.