Generalized principal bundles and quotient stacks. (English) Zbl 1514.18012

This paper considers an internalized notion of principal bundle making sense in any site, provided that the underlying category has all pullbacks and a terminal object. The topological group involved in the standard notion becomes here a group object of the category and the notion of locally trivial morphism is internalized by considering pullbacks along the morphisms of a covering family for the Grothendieck topology of the site. This internalized notion coincides with the classical one when the site is \(\left(\mathcal{T}op,std\right)\), where \(\mathcal{T}op\) is the category of compactly generated Hausdorff topological spaces and \(std\) is the standard Grothendieck topology. The principal bundles in algebraic geometry are an instance of this notion.
The significane of principal bundles lies in the fact that they are the objects classified by classical spaces via homotopy pullbacks [J. W. Milnor and J. D. Stasheff, Characteristic classes. Princeton, NJ: Princeton University Press (1974; Zbl 0298.57008)] and by classifying stacks via \(2\)-pullbacks. Classifying stacks are particular cases of the very important notion of quotient stacks, which are commonly thought as stackification of presheaves of action groupoids [G. Laumon and L. Moret-Bailly, Champs algébriques. Berlin: Springer (2000; Zbl 0945.14005)], while an explicit construction using presheaves of groupoids of principal bundles rigged out in equivariant maps to a fixed space is present in the algebraic context [F. Neumann, Algebraic stacks and moduli of vector bundles. Paper from the 27th Brazilian Mathematics Colloquium – 27°Colóquio Brasileiro de Matemática, Rio de Janeiro, Brazil, July 27–31, 2009. Rio de Janeiro: Instituto Nacional de Matemática Pura e Aplicada (IMPA) (2009; Zbl 1177.14002)] and in the differential context [J. Heinloth, in: Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005. Lecture notes from the seminars “Number theory”, “Algebraic geometry” and “Twisted cohomology theories” held at the University of Göttingen, Göttingen, Germany, 2004. Göttingen: Universitätsverlag Göttingen. 1–32 (2005; Zbl 1098.14501)]. This paper gives the same construction in the internal context to define quotient prestacks, establishing that these objects are well defined pseudofunctors. The author finds sufficient abstract conditions guaranteeing that these generalized quotient prestacks are to abide by descent in the sense of stacks, which is the main result of this paper.
The synopsis of the paper goes as follows.
§ 2
recalls the notions of action and equivariant morphism in the context of group objects of a category, constructing an action of an internal group on a pullback with its actions on the sources of the two morphisms involved in the pullback given. The notion of locally trivial morphism in a site is introduced, and it is used to define principal bundles and morphisms between them. The section is concluded by observing that the notion truly generalizes the classical notion of principal bundles over a topological space.
§ 3
gives the definition of generalized quotient prestacks. A key result of the section is that generalized principal bundles are stable under pullbacks, being crucial to prove that the definition is a good one.
§ 4
recalls some useful results about the canonical topology, establishing the main result of the paper claiming that, under certain mild assumptions on the underlying category, the quoitent prestacks are stacks with respect to every subcanonical topology.


18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
18F10 Grothendieck topologies and Grothendieck topoi
18C40 Structured objects in a category (group objects, etc.)
14A20 Generalizations (algebraic spaces, stacks)
18F15 Abstract manifolds and fiber bundles (category-theoretic aspects)
Full Text: arXiv Link


[1] B. Eckmann and P. J. Hilton. Group-like structures in general categories. I. Multiplications and comultiplications. Math. Ann., 145:227-255, 1962. · Zbl 0099.02101
[2] B. Eckmann and P. J. Hilton. Group-like structures in general categories. II: Equalizers, limits, lengths. III: Primitive categories. Math. Ann., 151:150-186, 1963. · Zbl 0115.01403
[3] A. Grothendieck. Technique de descente et théorèmes d’existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats. In Séminaire Bourbaki : années 1958/59 -1959/60, exposés 169-204, number 5 in Séminaire Bourbaki. Société mathématique de France, 1960. talk:190.
[4] A. Grothendieck. Techniques de construction et théorèmes d’existence en géométrie algébrique III : préschémas quotients. In Séminaire Bourbaki : années 1960/61, exposés 205-222, number 6 in Séminaire Bourbaki. Société mathématique de France, 1961. talk:212. · Zbl 0235.14007
[5] J. Heinloth. Notes on differentiable stacks. In Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005., pages 1-32. Göttingen: Universitätsverlag Göttin-gen, 2005. · Zbl 1098.14501
[6] A. Heyting. Die formalen Regeln der intuitionistischen Logik. I, II, III. Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1930:42-56, 57-71, 158-169, 1930.
[7] D. Husemoller. Fibre bundles. Springer-Verlag New York, [2d ed.] edition, 1975. · Zbl 0307.55015
[8] P. Ion and J. Serre. Galois Cohomology. Springer Monographs in Mathematics. Springer Berlin Heidelberg, 2001.
[9] P. T. Johnstone. Sketches of an elephant. A topos theory compendium. II, volume 44 of Oxf. Logic Guides. Oxford: Clarendon Press, 2002. · Zbl 1071.18001
[10] A. Kock. Fibre bundles in general categories. J. Pure Appl. Algebra, 56(3):233-245, 1989. · Zbl 0665.18009
[11] G. Laumon and L. Moret-Bailly. Champs algébriques, volume 39 of Ergeb. Math. Grenzgeb., 3. Folge. Berlin: Springer, 2000. · Zbl 0945.14005
[12] C. Lester. The Canonical Grothendieck Topology and a Homotopical Analog. https://arxiv.org/abs/1909.03188, 2019.
[13] J. W. Milnor and J. D. Stasheff. Characteristic classes. Annals of Mathematics Studies, no. 76. Princeton University Press, Princeton, N.J, 1974. · Zbl 0298.57008
[14] S. A. Mitchell. Notes on principal bundles and classifying spaces. 2006.
[15] F. Neumann. Algebraic Stacks and Moduli of Vector Bundles. IMPA Lecture Notes, 2011.
[16] T. Nikolaus, U. Schreiber, and D. Stevenson. Principal infinity-bundles: general theory. Journal of Homotopy and Related Structures, 10:749-801, 12 2015. · Zbl 1349.18032
[17] J. Penon. Sur les quasi-topos. Cah. Topologie Géom. Différ. Catégoriques, 18:181-218, 1977. · Zbl 0401.18002
[18] H. Sati and U. Schreiber. Equivariant principal infinity-bundles, 2022.
[19] J. M. Souriau. Groupes différentiels. Differential geometrical methods in mathematical physics, Proc. Conf. Aix-en-Provence and Salamanca 1979, Lect. Notes Math. 836, 91-128 (1980)., 1980. · Zbl 0501.58010
[20] N. Steenrod. The Topology of Fibre Bundles. (PMS-14). Princeton University Press, Princeton, 1951. School of Computing and Mathematical Sciences, University of Leicester Email: ec363@leicester.ac.uk · Zbl 0054.07103
[21] Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt Valeria de Paiva, Nuance Communications Inc: valeria.depaiva@gmail.com Richard Garner, Macquarie University: richard.garner@mq.edu.au Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu
[22] Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat Stephen Lack, Macquarie University: steve.lack@mq.edu.au Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
[23] Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com Susan Niefield, Union College: niefiels@union.edu
[24] Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca Jiri Rosický, Masaryk University: rosicky@math.muni.cz Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it Michael Shulman, University of San Diego: shulman@sandiego.edu Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si James Stasheff, University of North Carolina: jds@math.upenn.edu
[25] Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.