×

Normality and Cohen-Macaulayness of parahoric local models. (English) Zbl 1518.14040

Summary: We study the singularities of integral models of Shimura varieties and moduli stacks of shtukas with parahoric level structure. More generally, our results apply to the Pappas-Zhu and Levin mixed characteristic parahoric local models, and to their equal characteristic analogues. For any such local model we prove under minimal assumptions that the entire local model is normal with reduced special fiber and, if \(p > 2\), it is also Cohen-Macaulay. This proves a conjecture of Pappas and Zhu, and shows that the integral models of Shimura varieties constructed by Kisin and Pappas are Cohen-Macaulay as well.

MSC:

14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arasteh Rad, E., Habibi, S.: Local models for the moduli stacks of global G-shtukas. Math. Res. Lett. 26, 323-364 (2019) Zbl 1441.14042 MR 3999548 · Zbl 1441.14042
[2] Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Comm. Math. Phys. 164, 385-419 (1994) Zbl 0815.14015 MR 1289330 · Zbl 0815.14015
[3] Blickle, M., Schwede, K.: p 1 -linear maps in algebra and geometry. In: Commutative Algebra, Springer, New York, 123-205 (2013) Zbl 1328.14002 MR 3051373 · Zbl 1328.14002
[4] Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Progr. Math. 231, Birkhäuser Boston, Boston, MA (2005) Zbl 1072.14066 MR 2107324 · Zbl 1072.14066
[5] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5-251 (1972) Zbl 0254.14017 MR 327923 · Zbl 0254.14017
[6] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197-376 (1984) Zbl 0597.14041 MR 756316
[7] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge (1993) Zbl 0788.13005 MR 1251956 · Zbl 0788.13005
[8] Cass, R.: Central elements in affine mod p Hecke algebras via perverse F p -sheaves. Compos. Math. 157, 2215-2241 (2021) Zbl 07430019 MR 4311557 · Zbl 1484.14054
[9] Chai, C.-L., Norman, P.: Bad reduction of the Siegel moduli scheme of genus two with 0 .p/-level structure. Amer. J. Math. 112, 1003-1071 (1990) Zbl 0734.14010 MR 1081813 · Zbl 0734.14010
[10] Chai, C.-L., Norman, P.: Singularities of the 0 .p/-level structure. J. Algebraic Geom. 1, 251-278 (1992) Zbl 0785.14001 MR 1144439 · Zbl 0785.14001
[11] de Jong, A. J.: The moduli spaces of principally polarized abelian varieties with 0 .p/-level structure. J. Algebraic Geom. 2, 667-688 (1993) Zbl 0816.14020 MR 1227472 · Zbl 0816.14020
[12] Deligne, P., Pappas, G.: Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant. Compos. Math. 90, 59-79 (1994) Zbl 0826.14027 MR 1266495 · Zbl 0826.14027
[13] Görtz, U.: On the flatness of models of certain Shimura varieties of PEL-type. Math. Ann. 321, 689-727 (2001) Zbl 1073.14526 MR 1871975 · Zbl 1073.14526
[14] Grothendieck, A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. 8, 222 pp. (1961) Zbl 0118.36206 MR 217084
[15] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ. Math. 11, 167 pp. (1961) Zbl 0118.36206 MR 217085
[16] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math. 17, 91 pp. (1963) Zbl 0122.16102 MR 163911
[17] Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. 28, 255 pp. (1966) Zbl 1044.19904 MR 0217086 · Zbl 0144.19904
[18] Haines, T. J.: Dualities for root systems with automorphisms and applications to non-split groups. Represent. Theory 22, 1-26 (2018) Zbl 1430.20005 MR 3772644 · Zbl 1430.20005
[19] Haines, T., Rapoport, M.: On parahoric subgroups. Appendix to [32]
[20] Haines, T. J., Richarz, T.: The test function conjecture for local models of Weil-restricted groups. Compos. Math. 156, 1348-1404 (2020) Zbl 1469.14061 MR 4120166 · Zbl 1469.14061
[21] Haines, T. J., Richarz, T.: The test function conjecture for parahoric local models. J. Amer. Math. Soc. 34, 135-218 (2021) Zbl 07304879 MR 4188816 · Zbl 1481.14047
[22] Haines, T., Lourenço, J., Richarz, T.: On the normality of Schubert varieties: remaining cases in positive characteristic. arXiv:1806.11001 (2018)
[23] Hartshorne, R.: Residues and Duality. Lecture Notes in Math. 20, Springer, Berlin (1966) Zbl 0212.26101 MR 0222093 · Zbl 0212.26101
[24] Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254, 121-176 (1980) Zbl 0431.14004 MR 597077 · Zbl 0431.14004
[25] He, X.: Normality and Cohen-Macaulayness of local models of Shimura varieties. Duke Math. J. 162, 2509-2523 (2013) Zbl 1327.14121 MR 3127807 · Zbl 1327.14121
[26] He, X., Pappas, G., Rapoport, M.: Good and semi-stable reductions of Shimura varieties. J. École Polytech. Math. 7, 497-571 (2020) Zbl 07183615 MR 4086580 · Zbl 1473.11133
[27] Kisin, M., Pappas, G.: Integral models of Shimura varieties with parahoric level structure. Publ. Math. Inst. Hautes Études Sci. 128, 121-218 (2018) Zbl 1470.14049 MR 3905466 · Zbl 1470.14049
[28] Kovács, S.: Rational singularities. arXiv:1703.02269v8 (2018)
[29] Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergeb. Math. Grenzgeb. (3) 39, Springer, Berlin (2000) Zbl 0945.14005 MR 1771927 · Zbl 0945.14005
[30] Levin, B.: Local models for Weil-restricted groups. Compos. Math. 152, 2563-2601 (2016) Zbl 1375.14093 MR 3594288 · Zbl 1375.14093
[31] Mehta, V. B., van der Kallen, W.: On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p. Invent. Math. 108, 11-13 (1992) Zbl 0724.14008 MR 1156382 · Zbl 0724.14008
[32] Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219, 118-198 (2008) Zbl 1159.22010 MR 2435422 · Zbl 1159.22010
[33] Pappas, G., Rapoport, M., Smithling, B.: Local models of Shimura varieties, I. Geometry and combinatorics. In: Handbook of Moduli. Vol. III, Adv. Lect. Math. 26, Int. Press, Somerville, MA, 135-217 (2013) Zbl 1322.14014 MR 3135437 · Zbl 1322.14014
[34] Pappas, G., Zhu, X.: Local models of Shimura varieties and a conjecture of Kottwitz. Invent. Math. 194, 147-254 (2013) Zbl 1294.14012 MR 3103258 · Zbl 1294.14012
[35] Rapoport, M., Zink, T.: Period spaces for p-divisible groups. Ann. of Math. Stud. 141, Prin-ceton Univ. Press, Princeton, NJ (1996) Zbl 0873.14039 MR 1393439 · Zbl 0873.14039
[36] Richarz, T.: Schubert varieties in twisted affine flag varieties and local models. J. Algebra 375, 121-147 (2013) Zbl 1315.14066 MR 2998951 · Zbl 1315.14066
[37] Richarz, T.: Affine Grassmannians and geometric Satake equivalences. Int. Math. Res. Notices 2016, 3717-3767 Zbl 1404.14054 MR 3544618 · Zbl 1404.14054
[38] Richarz, T.: Erratum to “Affine Grassmannians and geometric Satake equivalences”. Int. Math. Res. Notices 2021, 13602-13608 Zbl 1404.14054 MR 4307697 · Zbl 1485.14090
[39] Richarz, T., Scholbach, J.: The intersection motive of the moduli stack of shtukas. Forum Math. Sigma 8, art. e8, 99 pp. (2020) Zbl 07162562 MR 4061978 · Zbl 1506.14045
[40] Stacks Project, http://stacks.math.columbia.edu/
[41] Zhu, X.: On the coherence conjecture of Pappas and Rapoport. Ann. of Math. (2) 180, 1-85 (2014) Zbl 1300.14042 MR 3194811 · Zbl 1300.14042
[42] Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. In: Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser. 24, Amer. Math. Soc., Providence, RI, 59-154 (2017) Zbl 1453.14122 MR 3752460 · Zbl 1453.14122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.