×

Equality of dimensions for some paracompact \(\sigma \)-spaces. (English. Russian original) Zbl 1520.54017

Math. Notes 113, No. 4, 488-501 (2023); translation from Mat. Zametki 113, No. 4, 499-516 (2023).
A.V. Arhangel’skiǐ posed the following question: Do the dimensions of a first-countable regular space with a countable network coincide? In this paper, the author gives a partial positive answer to Arhangel’skiǐ’s question; namely, it is proved that \(\mbox{Ind}\,X=\dim X=\mbox{ind}\,X\) for any first-countable paracompact \(\sigma\)-space \(X\) with a separately continuous semi-metric. Therefore, the equality of the dimensions for first-countable stratifiable spaces with a separately continuous semi-metric is obtained. The following question posed by Arhangel’skiǐ is open: Is it true that \(\mbox{Ind}\,X=\dim X\) for any stratifiable topological group \(X\)?
Reviewer: Shou Lin (Ningde)

MSC:

54F45 Dimension theory in general topology
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
Full Text: DOI

References:

[1] Aleksandrov, P. S.; Pasynkov, B. A., Introduction to Dimension Theory (1973), Moscow: Nauka, Moscow · Zbl 0272.54028
[2] Arkhangel’skii, A. V., Mappings and spaces, Russian Math. Surveys, 21, 4, 115-162 (1966) · Zbl 0171.43603 · doi:10.1070/RM1966v021n04ABEH004169
[3] Arkhangel’skii, A. V., Classes of topological groups, Russian Math. Surveys, 36, 3, 151-174 (1981) · Zbl 0488.22001 · doi:10.1070/RM1981v036n03ABEH004249
[4] Leibo, I. M., On closed images of metric spaces, Soviet Math. Dokl., 16, 1292-1295 (1975) · Zbl 0329.54034
[5] Leibo, I. M., On the dimensions of certain spaces, Soviet Math. Dokl., 25, 20-22 (1982) · Zbl 0504.54040
[6] Borges, C. J. R., On continuously semimetrizable and stratifiable spaces, Proc. Amer. Math. Soc., 24, 2, 193-196 (1970) · Zbl 0185.26501 · doi:10.1090/S0002-9939-1970-0250266-7
[7] Leibo, I. M., On the dimension of some semi-metric spaces, Conference on Set-Theoretic Topology and Topological Algebra, 36-37 (2018)
[8] Leibo, I. M., On the dimension of preimages of certain paracompact spaces, Math. Notes, 103, 3, 405-414 (2018) · Zbl 1398.54055 · doi:10.1134/S0001434618030070
[9] Engelking, R., Dimension Theory (1978), Amsterdam: North-Holland, Amsterdam · Zbl 0401.54029
[10] Lin, Sh.; Yun, Z., Generalized Metric Spaces and Mappings (2016), Paris: Atlantis Press, Paris · Zbl 1366.54001 · doi:10.2991/978-94-6239-216-8
[11] Oka, S., Dimension of stratifiable spaces, Trans. Amer. Math. Soc., 275, 1, 231-243 (1983) · Zbl 0508.54026 · doi:10.1090/S0002-9947-1983-0678346-6
[12] Dugundji, J., An extension of Tietze’s theorem, Pacific J. Math., 1, 3, 353-367 (1951) · Zbl 0043.38105 · doi:10.2140/pjm.1951.1.353
[13] Reed, G. M., Concerning first countable spaces, Fund. Math., 74, 1, 161-169 (1972) · Zbl 0227.54019 · doi:10.4064/fm-74-3-161-169
[14] Ito, M., \(M_3\)-spaces whose every point has a closure preserving outer base are \(M_1\), Topology Appl., 19, 1, 65-69 (1985) · Zbl 0567.54012 · doi:10.1016/0166-8641(85)90085-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.