×

HMS symmetries and hypergeometric systems. (English) Zbl 1523.14036

Hujdurović, Ademir (ed.) et al., European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20–26, 2021. Berlin: European Mathematical Society (EMS). 489-510 (2023).
Summary: The derived category of an algebraic variety might be a source of a myriad of new (categorical) symmetries. Some are predicted by homological mirror symmetry, to be obtained from the fundamental group of the space of complex structures of its mirror partner. These finally lead to differential equations. We expositorily unravel a part of this conjectural master plan for a class of toric varieties.
For the entire collection see [Zbl 1519.00033].

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14J33 Mirror symmetry (algebro-geometric aspects)
13A50 Actions of groups on commutative rings; invariant theory
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
32S45 Modifications; resolution of singularities (complex-analytic aspects)
16S38 Rings arising from noncommutative algebraic geometry
14F06 Sheaves in algebraic geometry

References:

[1] P. Achar, Local systems and constructible sheaves. 2007, applications to homological algebra: Introduction to perverse sheaves, https://www.math.lsu.edu/ pramod/
[2] A. Adolphson, Hypergeometric functions and rings generated by monomials. Duke Math. J. 73 (1994), no. 2, 269-290 Zbl 0804.33013 MR 1262208 · Zbl 0804.33013
[3] R. Anno, R. Bezrukavnikov, and I. Mirković, Stability conditions for Slodowy slices and real variations of stability. Mosc. Math. J. 15 (2015), no. 2, 187-203, 403 Zbl 1342.14034 MR 3427420 · Zbl 1342.14034
[4] P. S. Aspinwall, A point’s point of view of stringy geometry. J. High Energy Phys. (2003), no. 1, 002, 15 Zbl 1225.14033 MR 1970097 · Zbl 1225.14033
[5] A. Beȋlinson and J. Bernstein, Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15-18 Zbl 0476.14019 MR 610137 · Zbl 0476.14019
[6] F. Beukers, Monodromy of A-hypergeometric functions. J. Reine Angew. Math. 718 (2016), 183-206 Zbl 1355.33017 MR 3545882 · Zbl 1355.33017
[7] F. Beukers and G. Heckman, Monodromy for the hypergeometric function n F n 1 . Invent. Math. 95 (1989), no. 2, 325-354 Zbl 0663.30044 MR 974906 · Zbl 0663.30044
[8] A. A. Bolibrukh, The Riemann-Hilbert problem on the complex projective line. Mat. Zametki 46 (1989), no. 3, 118-120 Zbl 0687.30004 MR 1032917 · Zbl 0687.30004
[9] A. Bondal, M. Kapranov, and V. Schechtman, Perverse schobers and birational geometry. Selecta Math. (N.S.) 24 (2018), no. 1, 85-143 Zbl 1436.14037 MR 3769727 · Zbl 1436.14037
[10] L. A. Borisov and R. P. Horja, Mellin-Barnes integrals as Fourier-Mukai transforms. Adv. Math. 207 (2006), no. 2, 876-927 Zbl 1137.14314 MR 2271990 · Zbl 1137.14314
[11] T. Bridgeland, Y. Qiu, and T. Sutherland, Stability conditions and the A 2 quiver. Adv. Math. 365 (2020), 107049, 33 Zbl 07184853 MR 4064773 · Zbl 1481.16014
[12] E. Clader and Y. Ruan, Mirror symmetry constructions. In B-model Gromov-Witten the-ory, pp. 1-77, Trends Math., Birkhäuser/Springer, Cham, 2018 Zbl 1423.81144 MR 3965408 · Zbl 1423.81144
[13] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J. 147 (2009), no. 3, 377-438 Zbl 1176.14009 MR 2510741 · Zbl 1176.14009
[14] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Hodge-theoretic mirror symmetry for toric stacks. J. Differential Geom. 114 (2020), no. 1, 41-115 Zbl 1464.14044 MR 4047552 · Zbl 1464.14044
[15] D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry. Math. Surveys Monogr. 68, American Mathematical Society, Providence, RI, 1999 Zbl 0951.14026 MR 1677117 · Zbl 0951.14026
[16] P. Deligne, Équations différentielles à points singuliers réguliers. Lecture Notes in Math. 163, Springer, Berlin, 1970 Zbl 0244.14004 MR 0417174 · Zbl 0244.14004
[17] W. Donovan, Perverse schobers on Riemann surfaces: constructions and examples. Eur. J. Math. 5 (2019), no. 3, 771-797 Zbl 1423.14120 MR 3993263 · Zbl 1423.14120
[18] W. Donovan and E. Segal, Mixed braid group actions from deformations of surface sin-gularities. Comm. Math. Phys. 335 (2015), no. 1, 497-543 Zbl 1327.14185 MR 3314511 · Zbl 1327.14185
[19] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84 (1990), no. 2, 255-271 Zbl 0741.33011 MR 1080980 · Zbl 0741.33011
[20] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants. Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2008; Reprint of the 1994 edition Zbl 1138.14001 MR 2394437 HMS symmetries and hypergeometric systems 509 · Zbl 1138.14001
[21] I. M. Gel’fand, A. V. Zelevinskiȋ, and M. M. Kapranov, Equations of hypergeometric type and Newton polyhedra. Dokl. Akad. Nauk SSSR 300 (1988), no. 3, 529-534 · Zbl 0667.33010
[22] I. M. Gel’fand, A. V. Zelevinskiȋ, and M. M. Kapranov, Hypergeometric functions and toric varieties. Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 12-26 Zbl 0721.33006 MR 1011353 · Zbl 0721.33006
[23] D. Halpern-Leistner, The derived category of a GIT quotient. J. Amer. Math. Soc. 28 (2015), no. 3, 871-912 Zbl 1354.14029 MR 3327537 · Zbl 1354.14029
[24] D. Halpern-Leistner and S. V. Sam, Combinatorial constructions of derived equivalences. J. Amer. Math. Soc. 33 (2020), no. 3, 735-773 Zbl 1454.14045 MR 4127902 · Zbl 1454.14045
[25] D. Hilbert, Mathematische Probleme. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1900 (1900), 253-297 Zbl 31.0068.03 · JFM 31.0068.03
[26] D. Hilbert, Mathematical problems. Bull. Amer. Math. Soc. 8 (1902), no. 10, 437-479 Zbl 33.0976.07 MR 1557926 · JFM 33.0976.07
[27] K. Hori and C. Vafa, Mirror symmetry. 2000, arXiv:hep-th/0002222
[28] R. Hotta, K. Takeuchi, and T. Tanisaki, D-Modules, Perverse Sheaves, and Representation Theory. Progr. Math. 236, Birkhäuser, Boston, MA, 2008 Zbl 1136.14009 MR 2357361 · Zbl 1136.14009
[29] H. Iritani, Quantum D-modules of toric varieties and oscillatory integrals. In Handbook for Mirror Symmetry of Calabi-Yau & Fano Manifolds, pp. 131-147, Adv. Lect. Math. (ALM) 47, Int. Press, Somerville, MA, 2020 Zbl 1440.14190 MR 4237880 · Zbl 1440.14190
[30] M. Kapranov and V. Schechtman, Perverse schobers. 2015, arXiv:1411.2772 · Zbl 1436.14037
[31] M. Kapranov and V. Schechtman, Perverse sheaves over real hyperplane arrangements. Ann. of Math. (2) 183 (2016), no. 2, 619-679 Zbl 1360.14062 MR 3450484 · Zbl 1360.14062
[32] M. Kashiwara, Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers. In Séminaire Goulaouic-Schwartz, 1979-1980 (French), p. Exp. No. 19, École Polytech., Palaiseau, 1980 Zbl 0444.58014 MR 600704 · Zbl 0444.58014
[33] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319-365 Zbl 0566.32023 MR 743382 · Zbl 0566.32023
[34] N. M. Katz, An overview of Deligne’s work on Hilbert’s twenty-first problem. In Mathem-atical Developments Arising from Hilbert Problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pp. 537-557, Amer. Math. Soc., Providence, RI, 1976 Zbl 0347.14010 MR 0432640 · Zbl 0347.14010
[35] A. Kite, Discriminants and quasi-symmetry. 2017, arXiv:1711.08940
[36] M. Kontsevich, Homological algebra of mirror symmetry. In Proceedings of the Interna-tional Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 120-139, Birkhäuser, Basel, 1995 Zbl 0846.53021 MR 1403918 · Zbl 0846.53021
[37] Z. Mebkhout, Une équivalence de catégories. Compositio Math. 51 (1984), no. 1, 51-62 Zbl 0566.32021 MR 734784 · Zbl 0566.32021
[38] Š. Špenko 510
[39] J. Plemelj, Riemannsche Funktionenscharen mit gegebener Monodromiegruppe. Mon-atsh. Math. Phys. 19 (1908), no. 1, 211-245 Zbl 39.0461.01 MR 1547764 · JFM 39.0461.01
[40] M. Salvetti, Topology of the complement of real hyperplanes in C N . Invent. Math. 88 (1987), no. 3, 603-618 Zbl 0594.57009 MR 884802 · Zbl 0594.57009
[41] Š. Špenko and M. Van den Bergh, Non-commutative resolutions of quotient singularities for reductive groups. Invent. Math. 210 (2017), no. 1, 3-67 Zbl 1375.13007 MR 3698338 · Zbl 1375.13007
[42] Š. Špenko and M. Van den Bergh, A class of perverse schobers in geometric invariant theory. 2019, arXiv:1908.04213
[43] Š. Špenko and M. Van den Bergh, Perverse schobers and GKZ systems. Adv. Math. 402 (2022), Paper No. 108307 Zbl 07524877 MR 4406929 · Zbl 1494.13007
[44] The Stacks project authors, The stacks project. 2021, https://stacks.math.columbia.edu
[45] M. van den Bergh, Non-commutative crepant resolutions. In The Legacy of Niels Henrik Abel, pp. 749-770, Springer, Berlin, 2004 Zbl 1082.14005 MR 2077594 · Zbl 1082.14005
[46] Špela Špenko Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP 213, Bld du Triomphe, 1050 Bruxelles, Belgium; spela.spenko@ulb.be
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.