Zhou, Xiangyu; Zhu, Langfeng Siu’s lemma: generalizations and applications. (English) Zbl 1528.32016 Hujdurović, Ademir (ed.) et al., European congress of mathematics. Proceedings of the 8th congress, 8ECM, Portorož, Slovenia, June 20–26, 2021. Berlin: European Mathematical Society (EMS). 947-967 (2023). Summary: In this survey paper, we present some generalizations of Siu’s lemma related to multiplier ideal sheaves and discuss their applications in some problems related to optimal \(L^2\) extension, comparison between singular metrics on exceptional fibers of twisted relative pluricanonical bundles, and subadditivity of Kodaira-Iitaka dimensions with multiplier ideal sheaves. We also discuss some ideas in the proofs.For the entire collection see [Zbl 1519.00033]. MSC: 32D15 Continuation of analytic objects in several complex variables 14F18 Multiplier ideals 32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results 32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators 32U05 Plurisubharmonic functions and generalizations Keywords:optimal \(L^2\) extension; multiplier ideal sheaf; singularities of plurisubharmonic functions; strong openness × Cite Format Result Cite Review PDF Full Text: DOI References: [1] U. Angehrn and Y. T. Siu, Effective freeness and point separation for adjoint bundles. Invent. Math. 122 (1995), no. 2, 291-308 Zbl 0847.32035 MR 1358978 · Zbl 0847.32035 [2] B. Berndtsson, The openness conjecture and complex Brunn-Minkowski inequalities. In Complex Geometry and Dynamics, pp. 29-44, Abel Symp. 10, Springer, Cham, 2015 Zbl 1337.32001 MR 3587460 · Zbl 1337.32001 [3] B. Berndtsson and M. Pȃun, Bergman kernels and the pseudoeffectivity of relative canon-ical bundles. Duke Math. J. 145 (2008), no. 2, 341-378 Zbl 1181.32025 MR 2449950 · Zbl 1181.32025 [4] B. Berndtsson and M. Pȃun, A Bergman kernel proof of the Kawamata subadjunction theorem. 2008, arXiv:0804.3884 [5] B. Berndtsson and M. Pȃun, Bergman kernels and subadjunction. 2010, arXiv:1002.4145 [6] J. Cao, Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and appli-cations. In Complex and Symplectic Geometry, pp. 19-38, Springer INdAM Ser. 21, Springer, Cham, 2017 Zbl 1405.32029 MR 3645303 · Zbl 1405.32029 [7] J.-P. Demailly, Singular Hermitian metrics on positive line bundles. In Complex Algebraic Varieties (Bayreuth, 1990), pp. 87-104, Lecture Notes in Math. 1507, Springer, Berlin, 1992 Zbl 0784.32024 MR 1178721 · Zbl 0784.32024 [8] J.-P. Demailly, Analytic Methods in Algebraic Geometry. Surv. Mod. Math. 1, Interna-tional Press, Somerville, MA; Higher Education Press, Beijing, 2012 Zbl 1271.14001 MR 2978333 [9] J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic sub-varieties. In The Legacy of Bernhard Riemann After One Hundred and Fifty Years. Vol. I, pp. 191-222, Adv. Lect. Math. (ALM) 35, Int. Press, Somerville, MA, 2016 Zbl 1360.14025 MR 3525916 · Zbl 1360.14025 [10] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556 Zbl 0994.32021 MR 1852009 · Zbl 0994.32021 [11] J. E. Fornaess, Several complex variables. 2015, arXiv:1507.00562 [12] Q. Guan and X. Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems. Invent. Math. 202 (2015), no. 2, 635-676 Zbl 1333.32014 MR 3418242 · Zbl 1333.32014 [13] Q. Guan and X. Zhou, A proof of Demailly’s strong openness conjecture. Ann. of Math. (2) 182 (2015), no. 2, 605-616 Zbl 1329.32016 MR 3418526 · Zbl 1329.32016 [14] Q. Guan and X. Zhou, A solution of an L 2 extension problem with an optimal estimate and applications. Ann. of Math. (2) 181 (2015), no. 3, 1139-1208 Zbl 1348.32008 MR 3296822 · Zbl 1348.32008 [15] Q. A. Guan, Z. Q. Li, and X. Y. Zhou, Estimation of weighted L 2 norm related to Demailly’s Strong Openness Conjecture. 2016, arXiv:1603.05733 [16] C. Hacon, M. Popa, and C. Schnell, Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Pȃun. In Local and Global Methods in Algebraic Geometry, pp. 143-195, Contemp. Math. 712, Amer. Math. Soc., Providence, RI, 2018 Zbl 1398.14018 MR 3832403 · Zbl 1398.14018 [17] Y. Kawamata, Characterization of abelian varieties. Compositio Math. 43 (1981), no. 2, 253-276 Zbl 0471.14022 MR 622451 · Zbl 0471.14022 [18] A. M. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar cur-vature. Ann. of Math. (2) 132 (1990), no. 3, 549-596 Zbl 0731.53063 MR 1078269 · Zbl 0731.53063 [19] T. Ohsawa, On the extension of L 2 holomorphic functions. V. Effects of generalization. Nagoya Math. J. 161 (2001), 1-21 Zbl 0986.32002 MR 1820210 · Zbl 0986.32002 [20] T. Ohsawa, L 2 Approaches in Several Complex Variables, Towards the Oka-Cartan The-ory with Precise Bounds. Springer Monogr. Math., Springer, Tokyo, 2018 Zbl 1439.32003 MR 3887636 [21] T. Ohsawa and K. Takegoshi, On the extension of L 2 holomorphic functions. Math. Z. 195 (1987), no. 2, 197-204 Zbl 0625.32011 MR 892051 · Zbl 0625.32011 [22] D. H. Phong and J. Sturm, Algebraic estimates, stability of local zeta functions, and uni-form estimates for distribution functions. Ann. of Math. (2) 152 (2000), no. 1, 277-329 Zbl 0995.11065 MR 1792297 · Zbl 0995.11065 [23] M. Pȃun and S. Takayama, Positivity of twisted relative pluricanonical bundles and their direct images. J. Algebraic Geom. 27 (2018), no. 2, 211-272 Zbl 1430.14017 MR 3764276 · Zbl 1430.14017 [24] Siu’s lemma: Generalizations and applications 967 [25] Y.-T. Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. In Geo-metric Complex Analysis (Hayama, 1995), pp. 577-592, World Sci. Publ., River Edge, NJ, 1996 Zbl 0941.32021 MR 1453639 [26] Y.-T. Siu, Invariance of plurigenera and torsion-freeness of direct image sheaves of pluri-canonical bundles. In Finite or Infinite Dimensional Complex Analysis and Applications, pp. 45-83, Adv. Complex Anal. Appl. 2, Kluwer Acad. Publ., Dordrecht, 2004 Zbl 1044.32016 MR 2058399 · Zbl 1044.32016 [27] E. Viehweg, Die Additivität der Kodaira Dimension für projektive Faserräume über Vari-etäten des allgemeinen Typs. J. Reine Angew. Math. 330 (1982), 132-142 · Zbl 0466.14009 [28] J. Wang, On the Iitaka conjecture C n;m for Kähler fibre spaces. Ann. Fac. Sci. Toulouse Math. (6) 30 (2021), no. 4, 813-897 Zbl 07469482 MR 4350100 · Zbl 1535.32022 [29] L. Yi, An Ohsawa-Takegoshi theorem on compact Kähler manifolds. Sci. China Math. 57 (2014), no. 1, 9-30 Zbl 1302.32035 MR 3146512 · Zbl 1302.32035 [30] X. Zhou and L. Zhu, A generalized Siu’s lemma. Math. Res. Lett. 24 (2017), no. 6, 1897-1913 Zbl 1394.32027 MR 3762700 · Zbl 1394.32027 [31] X. Zhou and L. Zhu, An optimal L 2 extension theorem on weakly pseudoconvex Kähler manifolds. J. Differential Geom. 110 (2018), no. 1, 135-186 Zbl 1426.53082 MR 3851746 · Zbl 1426.53082 [32] X. Zhou and L. Zhu, Optimal L 2 extension of sections from subvarieties in weakly pseu-doconvex manifolds. Pacific J. Math. 309 (2020), no. 2, 475-510 Zbl 1458.32013 MR 4202022 · Zbl 1458.32013 [33] X. Zhou and L. Zhu, Siu’s lemma, optimal L 2 extension and applications to twisted pluri-canonical sheaves. Math. Ann. 377 (2020), no. 1-2, 675-722 Zbl 1452.32014 MR 4099619 · Zbl 1452.32014 [34] X. Zhou and L. Zhu, Subadditivity of generalized Kodaira dimensions and extension the-orems. Internat. J. Math. 31 (2020), no. 12, 2050098, 36 Zbl 1457.32059 MR 4184430 · Zbl 1457.32059 [35] X. Zhou and L. Zhu, Extension of cohomology classes and holomorphic sections defined on subvarieties. J. Algebraic Geom. 31 (2022), no. 1, 137-179 Zbl 07459642 MR 4372411 · Zbl 1487.32108 [36] X. Y. Zhou and L. F. Zhu, Optimal L 2 extension and Siu’s lemma. Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 8, 1289-1296 Zbl 1402.32013 MR 3843436 · Zbl 1402.32013 [37] Xiangyu Zhou Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, P. R. China; [38] Langfeng Zhu School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China; This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.