×

Untersuchungen über allgemeine Metrik. IV: Zur Metrik der Kurven. (German) JFM 56.0508.04

Es sei \(B\) ein in einem metrischen Raum enthaltener Bogen. \(E=(b_1,\ldots, b_n)\) sei eine endliche Punktmenge von \(B\). Bedeutet \(\pi = i_1,\ldots,i_n\) eine beliebige Permutation von \(1,\ldots, n\), so sei \(\lambda(E)\) die kleinste der \(n!\) Abstandssummen \[ \lambda_{\pi}(E)=\sum_{j=1}^{n-1}b_{i_j}b_{i_{j+1}}. \] Verf. beweist, daß die obere Schranke aller Zahlen \(\lambda(E)\), wobei \(E\) alle endlichen Teilmengen von \(B\) durchläuft, gleich der Länge von \(B\) ist. – Sind \(p\), \(q\), \(r\) drei verschiedene Punkte von \(B\), so nennt Verf. die Zahl \[ (p,q,r)=\frac{\sqrt{(pq+qr+rp)(pq+qr-rp)(pq-qr+rp)(-pq+qr+rp)}} {pq\cdot qr\cdot rp} \] die Krümmung von \(p\), \(q\), \(r\) und beweist, daß \(B\) dann und nur dann gerade (d. h. auf eine Strecke abstandstreu abbildbar) ist, wenn je drei Punkte eine verschwindende Krümmung haben. Konvergieren für jede Folge von Punktetripeln, die gegen einen Punkt \(x\) konvergieren, die Krümmungen gegen eine Zahl \(\varkappa(x)\), so heißt diese Zahl die Krümmung von \(B\) in \(x\), und es gilt: Ein Teilbogen eines cartesischen \(R_n\) ist genau dann eine Strecke, wenn er in jedem Punkte die Krümmung Null hat. Der Beweis dieses Satzes ist rein metrisch und benutzt keinerlei Differenzierbarkeitsvoraussetzungen. In beliebigen metrischen Räumen ist der Satz nicht allgemein richtig. – Unter allen Bogen endlicher Länge in einem kompakten metrischen Raume, die zwei feste Punkte \(a\), \(b\) verbinden, gibt es einen geodätischen, d. h. einen von kürzester Länge. Seine Länge heißt der geodätische Abstand \(\gamma(a, b)\) von \(a\), \(b\). Setzt man für eine Teilmenge \(E=(b_1,\ldots, b_n)\) (in natürlicher Reihenfolge) \[ \gamma(E)=\sum_{i=1}^{n-1}\gamma(b_ib_{i+1}), \] so ist die geodätische Bogenlänge \(\gamma(B)\), d. h. die obere Schranke aller Zahlen \(\gamma(E)\), wobei \(E\) alle endlichen Teilmengen von \(B\) durchläuft, gleich der gewöhnlichen Bogenlänge.

PDFBibTeX XMLCite
Full Text: DOI EuDML