Chen, Zhiqi; Chen, Xueqing; Ding, Ming Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms. (English) Zbl 07285972 Czech. Math. J. 70, No. 4, 953-958 (2020). Summary: Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras. MSC: 17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.) 17A30 Nonassociative algebras satisfying other identities 17D25 Lie-admissible algebras Keywords:Novikov algebra; fermionic Novikov algebra; invariant bilinear form PDF BibTeX XML Cite \textit{Z. Chen} et al., Czech. Math. J. 70, No. 4, 953--958 (2020; Zbl 07285972) Full Text: DOI OpenURL References: [1] Balinskii, A. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math., Dokl. 32 (1985), 228-231 translated from Dokl. Akad. Nauk SSSR 283 1985 1036-1039 [2] Burde, D., Simple left-symmetric algebras with solvable Lie algebra, Manuscr. Math. 95 (1998), 397-411 erratum ibid. 96 1998 393-395 [3] Dubrovin, B. A.; Novikov, S. P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitham averaging method, Sov. Math., Dokl. 27 (1983), 665-669 translated from Dokl. Akad. Nauk SSSR 270 1983 781-785 [4] Dubrovin, B. A.; Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math., Dokl. 30 (1984), 651-654 translated from Dokl. Akad. Nauk SSSR 279 1984 294-297 [5] Gel’fand, I. M.; Dikii, L. A., Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surv. 30 (1975), 77-113 translated from Usp. Mat. Nauk 30 1975 67-100 [6] Gel’fand, I. M.; Dikii, L. A., A Lie algebra structure in a formal variational calculation, Funct. Anal. Appl. 10 (1976), 16-22 translated from Funkts. Anal. Prilozh. 10 1976 18-25 [7] Gel’fand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funkts. Anal. Prilozh. Russian 13 (1979), 13-30 [8] Guediri, M., Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys. 82 (2014), 132-144 [9] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983) [10] Vinberg, E. B., The theory of convex homogeneous cones, Trans. Mosc. Math. Soc. 12 (1963), 340-403 translated from Tr. Mosk. Mat. O. 12 1963 303-358 [11] Xu, X., Hamiltonian operators and associative algebras with a derivation, Lett. Math. Phys. 33 (1995), 1-6 [12] Xu, X., Hamiltonian superoperators, J. Phys. A, Math. Gen. 28 (1995), 1681-1698 [13] Xu, X., Variational calculus of supervariables and related algebraic structures, J. Algebra 223 (2000), 396-437 [14] Zel’manov, E., On a class of local translation invariant Lie algebras, Sov. Math., Dokl. 35 (1987), 216-218 translated from Dokl. Akad. Nauk SSSR 292 1987 1294-1297 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.