×

On a Schur-type product for matrices with operator entries. (English) Zbl 07290394

Summary: In this paper, we will introduce a new Schur-type product for matrices with operator entries, and explore some of its properties. We shall see a connection between this product and the classical Schur product that will allow us to prove that this set of matrices endowed with such new product defines a Banach algebra. Also, a way to compute the operator and multiplier norms of matrices with operator entries in terms of norms of scalar matrices will be provided. As applications, we present a way to obtain multipliers for one of the products from a multiplier for the other product and show a method to construct a countable amount of elements belonging to different vector measure spaces, from a single element of \(L^\infty (\mathbb{T})\).

MSC:

47L10 Algebras of operators on Banach spaces and other topological linear spaces
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
15B05 Toeplitz, Cauchy, and related matrices
46G10 Vector-valued measures and integration
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Badea, C.; Paulsen, V., Schur multipliers and operator-valued Foguel-Hankel operators, Indiana Univ. Math. J, 50, 1509-1522 (2001) · Zbl 1031.47019 · doi:10.1512/iumj.2001.50.2121
[2] Banica, T., Complex Hadamard matrices with noncommutative entries, Ann. Funct. Anal., 9, 3, 354-368 (2018) · Zbl 1405.46050 · doi:10.1215/20088752-2017-0042
[3] Bennett, G., Schur multipliers, Duke Math. J., 44, 603-639 (1977) · Zbl 0389.47015 · doi:10.1215/S0012-7094-77-04426-X
[4] Blasco, O.; García-Bayona, I., A class of Schur multipliers of matrices with operator entries, Mediterr. J. Math., 16, 82 (2019) · Zbl 1499.47004 · doi:10.1007/s00009-019-1364-4
[5] Blasco, O., García-Bayona, I.: New spaces of matrices with operator-valued entries. Quaest, Math (2019) · Zbl 1499.47004
[6] Blasco, O.; García-Bayona, I., Schur product with operator-valued entries, Taiwan J. Math., 23, 5, 1175-1199 (2019) · Zbl 07126944 · doi:10.11650/tjm/181110
[7] Choi, D., Inequalities related to partial trace and block Hadamard product, Linear Multilinear A., 66, 8, 1619-1625 (2017) · Zbl 06891546 · doi:10.1080/03081087.2017.1364341
[8] Christensen, E., On the complete boundedness of the Schur block product, Proc. Am. Math. Soc., 147, 2, 523-532 (2019) · Zbl 1442.15041 · doi:10.1090/proc/14202
[9] Das, PK; Vashisht, LK, Traces of Hadamard and Kronecker products of matrices, Math. Appl., 6, 143-150 (2017) · Zbl 1386.15042 · doi:10.13164/ma.2017.09
[10] Diestel, J., Uhl, Jun, J.J.: Vector measures. Integration, American Mathematical Society (AMS). XIII, 322 p. 35-60 (1977) · Zbl 0369.46039
[11] García-Bayona, I., Traces of Schur and Kronecker products for block matrices, Khayyam J. Math., 5, 2, 40-50 (2019) · Zbl 1438.15051
[12] Gohberg, I.; Kaashoek, MA; Goldberg, S., Classes of Linear Operators (1993), Basel: Birkhauser Verlag, Basel · Zbl 0789.47001
[13] Günter, M.; Klotz, L., Schur’s theorem for a block Hadamard product, Linear Algebra Appl., 437, 948-956 (2012) · Zbl 1247.15018 · doi:10.1016/j.laa.2012.04.002
[14] Halmos, PR, Measure Theory (1974), New York: Springer, New York · Zbl 0283.28001
[15] Horn, RA, The Hadamard product, Proc. Symp. Appl. Math., 40, 87-169 (1990) · Zbl 0712.15011 · doi:10.1090/psapm/040/1059485
[16] Horn, RA; Mathias, R.; Nakamura, Y., Inequalities for unitarily invariant norms and bilinear matrix products, Linear Multilinear A., 30, 4, 303-314 (1991) · Zbl 0754.15015 · doi:10.1080/03081089108818114
[17] Kluvánek, I.; Knowles, G., Vector Measures and Control Systems (1976), Amsterdam: North-Holland Mathematics Studies, Amsterdam · Zbl 0316.46043
[18] Kwapien, S.; Pelczyinski, A., The main triangle projection in matrix spaces and its applications, Stud. Math., 34, 43-68 (1970) · Zbl 0189.43505 · doi:10.4064/sm-34-1-43-67
[19] Livshits, L., Block-matrix generalizations of infinite-dimensional Schur products and Schur multipliers, Linear Multilinear A., 38, 1-2, 59-78 (1994) · Zbl 0813.15012 · doi:10.1080/03081089508818340
[20] Magnus, J. R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. 2nd ed., Wiley, Chichester (1999). J. Operator Theory1 17-56 (1995)
[21] Paulsen, V., Completely Bounded Maps and Operator Algebras (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1029.47003
[22] Persson, LE; Popa, N., Matrix Spaces and Schur Multipliers: Matriceal Harmonic Analysis (2014), Hackensack: World Scientific, Hackensack · Zbl 1303.47018
[23] Pommerenke, C., Univalent Functions (1975), Göttingen: Vandenhoeck and Ruprecht, Göttingen · Zbl 0298.30014
[24] Schur, J., Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Verandlichen, J. Reine Angew. Math., 140, 1-28 (1911) · JFM 42.0367.01 · doi:10.1515/crll.1911.140.1
[25] Shapiro, HS; Shields, AL, On some interpolations problems for analytic functions, Am. J. Math., 83, 513-532 (1961) · Zbl 0112.29701 · doi:10.2307/2372892
[26] Sothanaphan, N., Determinants of block matrices with noncommuting blocks, Linear Algebra Appl., 512, 202-218 (2017) · Zbl 1353.15006 · doi:10.1016/j.laa.2016.10.004
[27] Stout, QF, Schur products of operators and the essential numerical range, Trans. Am. Math. Soc., 264, 1, 39-47 (1981) · Zbl 0481.47003 · doi:10.1090/S0002-9947-1981-0597865-2
[28] Styan, GPH, Hadamard products and multivariate statistical analysis, Linear Algebra Appl., 6, 217-240 (1973) · Zbl 0255.15002 · doi:10.1016/0024-3795(73)90023-2
[29] Toeplitz, O., Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veranderlichen, Math. Ann., 70, 351-376 (1911) · JFM 42.0366.01 · doi:10.1007/BF01564502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.