Zimmerman, Alexander G.; Kowalski, Julia Mixed finite elements for convection-coupled phase-change in enthalpy form: open software verified and applied to 2D benchmarks. (English) Zbl 07308029 Comput. Math. Appl. 84, 77-96 (2021). Summary: Melting and solidification processes are often affected by natural convection of the liquid, posing a multi-physics problem involving fluid flow, convective and diffusive heat transfer, and phase-change reactions. Enthalpy methods formulate this convection-coupled phase-change problem on a single computational domain. The governing equations can be solved accurately with a monolithic approach using mixed finite elements and Newton’s method. Previously, the monolithic approach has relied on adaptive mesh refinement to regularize local nonlinearities at phase interfaces. This contribution instead separates mesh refinement from nonlinear problem regularization and provides a continuation procedure which robustly obtains accurate solutions on the tested 2D uniform meshes. A flexible and extensible open source implementation is provided. The code is formally verified to accurately solve the governing equations in time and in 2D space, and convergence rates are shown. Two benchmark simulations are presented in detail with comparison to experimental data sets and corresponding results from the literature, one for the melting of octadecane and another for the freezing of water. Sensitivities to key numerical parameters are presented. For the case of freezing water, effective reduction of numerical errors from these key parameters is successfully demonstrated. Two more simulations are briefly presented, one for melting at a higher Rayleigh number and one for melting gallium. Cited in 3 Documents MSC: 76R10 Free convection 80A22 Stefan problems, phase changes, etc. 76M10 Finite element methods applied to problems in fluid mechanics 76T99 Multiphase and multicomponent flows 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs Keywords:computational fluid dynamics; phase-change; mixed finite elements; nonlinear; regularization; firedrake Software:Python; UFL; MUMPS; TSFC; petsc4py; PETSc; Firedrake; PT-Scotch; mpi4py; sapphire PDF BibTeX XML Cite \textit{A. G. Zimmerman} and \textit{J. Kowalski}, Comput. Math. Appl. 84, 77--96 (2021; Zbl 07308029) Full Text: DOI arXiv References: [1] Sparrow, E.; Schmidt, R. R.; Ramsey, J. W., Experiments on the role of natural convection in the melting of solids, J. Heat Transfer, 100 (1978) [2] Sparrow, E.; Ramsey, J. W.; Kemink, R. G., Freezing controlled by natural convection, J. Heat Transfer, 101 (1979) [3] Okada, M., Analysis of heat transfer during melting from a vertical wall, Int. J. Heat Mass Transfer, 27, 11, 2057-2066 (1984) · Zbl 0555.76083 [4] Kowalewski, T. A.; Rebow, M., Freezing of water in a differentially heated cubic cavity, Int. J. Comput. Fluid Dyn., 11, 3-4, 193-210 (1999) · Zbl 0947.76553 [5] Schüller, K.; Berkels, B.; Kowalski, J., Integrated modeling and validation for phase change with natural convection, (Schäfer, M.; Behr, M.; Mehl, M.; Wohlmuth, B., Recent Advances in Computational Engineering. Recent Advances in Computational Engineering, Lectures Notes in Computational Science and Engineering (LNCSE), vol. 124 (2017), Springer), 127-144 [6] Voller, V. R.; Cross, M.; Markatos, N. C., An enthalpy method for convection/diffusion phase change, Internat. J. Numer. Methods Engrg., 24, 1, 271-284 (1987) · Zbl 0609.76104 [7] Alexiades, V.; Solomon, A. D., Mathematical Modeling of Melting and Freezing Processes (1992), Hemisphere Publishing: Hemisphere Publishing Bristol, PA (United States) [8] Voller, V. R.; Prakash, C., A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transfer, 30, 8, 1709-1719 (1987) [9] Brent, A. D.; Voller, V. R.; Reid, K. T.J., Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. Heat Transfer A, 13, 3, 297-318 (1988) [10] Giangi, M.; Kowalewski, T. A.; Stella, F.; Leonardi, E., Natural convection during ice formation: numerical simulation vs. experimental results, Comput. Assist. Mech. Eng. Sci., 7, 3, 321-342 (2000) · Zbl 0953.76587 [11] Evans, K. J.; Knoll, D. A., Temporal accuracy analysis of phase change convection simulations using the JFNK-SIMPLE algorithm, Internat. J. Numer. Methods Fluids, 55, 7, 637-653 (2007) · Zbl 1388.76246 [12] Belhamadia, Y.; Kane, A. S.; Fortin, A., An enhanced mathematical model for phase change problems with natural convection, Int. J. Numer. Anal. Model., 3, 2, 192-206 (2012) · Zbl 1376.80005 [13] Danaila, I.; Moglan, R.; Hecht, F.; Le Masson, S., A Newton method with adaptive finite elements for solving phase-change problems with natural convection, J. Comput. Phys., 274, 826-840 (2014) · Zbl 1351.76056 [14] Zimmerman, A. G.; Kowalski, J., Monolithic simulation of convection-coupled phase-change: verification and reproducibility, (Schäfer, M.; Behr, M.; Mehl, M.; Wohlmuth, B., Recent Advances in Computational Engineering. Recent Advances in Computational Engineering, Lectures Notes in Computational Science and Engineering (LNCSE), vol. 124 (2017), Springer), 177-197 [15] Rakotondrandisa, A.; Danaila, I.; Danaila, L., Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting, Int. J. Heat Fluid Flow, 76, 57-71 (2019) [16] Woodfield, J.; Alvarez, M.; Gómez-Vargas, B.; Ruiz-Baier, R., Stability and finite element approximation of phase change models for natural convection in porous media, J. Comput. Appl. Math., 360, 117-137 (2019) · Zbl 1416.76133 [17] Wang, S.; Faghri, A.; Bergman, T. L., A comprehensive numerical model for melting with natural convection, Int. J. Heat Mass Transfer, 53, 9-10, 1986-2000 (2010) · Zbl 1190.80044 [18] Voller, V. R.; Swaminathan, C. R.; Thomas, B. G., Fixed grid techniques for phase change problems: a review, Internat. J. Numer. Methods Engrg., 30, 4, 875-898 (1990) · Zbl 0729.73237 [19] Rakotondrandisa, A.; Sadaka, G.; Danaila, I., A finite-element toolbox for the simulation of solid-liquid phase-change systems with natural convection, Comput. Phys. Comm., Article 107188 pp. (2020) [20] Belhamadia, Y.; Fortin, A.; Briffard, T., A two-dimensional adaptive remeshing method for solving melting and solidification problems with convection, Numer. Heat Transfer A, 76, 1-19 (2019) [21] Álvarez Guadamúz, M.; Gatica, G.; Gómez Vargas, B.; Ruiz Baier, R., New mixed finite element methods for natural convection with phase-change in porous media, J. Sci. Comput. (2019) · Zbl 1416.76091 [22] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61 (1998), SIAM · Zbl 0908.65055 [23] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G.-T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43, 3, 24:1-24:27 (2016) · Zbl 1396.65144 [24] Zimmerman, A. G., Geo-fluid-dynamics/sapphire: Sapphire package used in ‘mixed finite elements for convection-coupled phase-change in enthalpy form: Open software verified and applied to 2D benchmarks’ (2020), Zenodo, http://dx.doi.org/10.5281/zenodo.3891625 [25] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: a domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40, 2, 9 (2012) [26] Homolya, M.; Mitchell, L.; Luporini, F.; Ham, D. A., TSFC: A structure-preserving form compiler, SIAM J. Sci. Comput., 40 (2017) · Zbl 1388.68020 [27] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Users ManualTechnical Report ANL-95/11 - Revision 3.9 (2018), Argonne National Laboratory [28] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154 [29] Dalcin, L. D.; Paz, R. R.; Kler, P. A.; Cosimo, A., Parallel distributed computing using Python, Adv. Water Resour., 34, 9, 1124-1139 (2011), New Computational Methods and Software Tools [30] Amestoy, P.; Duff, I.; L’Excellent, J.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018 [31] Amestoy, P.; Guermouche, A.; L’Excellent, J.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 2, 136-156 (2006) [32] Chevalier, C.; Pellegrini, F., PT-SCOTCH: a tool for efficient parallel graph ordering, Parallel Comput., 34, 6, 318-331 (2008) [33] Zenodo/Firedrake-20200611.3, Software used in ’Mixed finite elements for convection-coupled phase-change in enthalpy form: Open software verified and applied to 2D benchmarks’ (2020) [34] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 1, 4-10 (2002) [35] Michałek, T.; Kowalewski, T. A., Simulations of the water freezing process-numerical benchmarks, Task Quart., 7, 3, 389-408 (2003) [36] Gebhart, B.; Mollendorf, J. C., A new density relation for pure and saline water, Deep Sea Res., 24, 9, 831-848 (1977) [37] Bertrand, O.; Binet, B.; Hervé, C.; Couturier, S.; Delannoy, Y.; Gobin, D.; Lacroix, M.; Le Quéré, P.; Mencinger, J.; Sadat, H.; Vieira, G., Melting driven by natural convection a comparison exercise: First result, Int. J. Therm. Sci., 38, 5-26 (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.