×

Impacts of natural fractures on hydraulic fracturing treatment in all asymptotic propagation regimes. (English) Zbl 1506.74364

Summary: Hydraulic fracturing is a technique in which pressurized fluid is pumped into the well to induce fracture propagation in the rock formation. The treatment aims at enhancing permeability and well-reservoir connectivity. However, the presence of natural fractures can impact the hydraulic fracture propagation, increasing the complexity of the hydraulic fracturing treatment, and affect the final configuration of the fracture network. Furthermore, different propagation regimes can develop depending on field conditions, properties of the porous matrix, fractures, the injection fluid, and time. This work introduces a robust fully coupled hydro-mechanical approach to investigate the impacts of natural fractures on hydraulic fracturing in four limiting propagation regimes: toughness-storage, toughness-leak-off, viscosity-storage, and viscosity-leak-off dominated. The proposed approach is based on the finite element method and incorporates the coupling of pore pressure/stress within the permeable rock formation and fracture propagation. An innovative mesh fragmentation technique with an intrinsic pore-cohesive zone approach is implemented in the in-house multiphysics framework to simulate fracture propagation with complex crack patterns. Cohesive Zone Model (CZM) represents the initiation and propagation of hydraulic fractures while a contact model with the Mohr-Coulomb criterion is used to represent the normal closure/opening and friction/shear dilation of natural fractures. The results of the new approach are compared against analytical and numerical solutions. Moreover, the influence of parameters such as rock permeability, fluid viscosity, initial stress state, and intercepting angle on the hydraulic and natural fracture is also investigated. The robustness of the presented methodology is demonstrated by simulating crossing with an offset, branching, fracture propagation from the tip of a natural crack, and interaction of multiple cracks. These results can provide guidance for a better understanding of the complex process of hydraulic fracturing.

MSC:

74R10 Brittle fracture
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Van As, A.; Jeffrey, R. G., Caving induced by hydraulic fracturing at Northparkes Mines, (4th North Am. Rock Mech. Symp. (2000), American Rock Mechanics Association), 353-360
[2] Jeffrey, R. G.; Mills, K. W., Hydraulic fracturing applied to inducing longwall coal mine goaf falls, (4th North Am. Rock Mech. Symp. (2000), American Rock Mechanics Association), 423-430
[3] de Laguna, W., Disposal of radioactive wastes by hydraulic fracturing. Part I. General concept and first field experiments, Nucl. Eng. Des., 3, 338-352 (1966)
[4] Maloney, K. O.; Yoxtheimer, D. A., Production and disposal of waste materials from gas and oil extraction from the marcellus shale Play in Pennsylvania, Environ. Pract., 14, 278-287 (2012)
[5] Board, M.; Rorke, T.; Williams, G.; Gay, N., Fluid injection for rockburst control in deep mining, (U.S. Symp. Rock Mech. (1992)), 111-120
[6] Desroches, J., Stress testing with the micro-hydraulic fracturing technique: Focus on fracture reopening, (Proc. 35th US Symp. Rock Mech. (1995), American Rock Mechanics Association: American Rock Mechanics Association Balkema, Rotterdam), 217-223
[7] O’Sullivan, M. J.; Pruess, K.; Lippmann, M. J., State of the art geothermal reservoir simulation, Geothermics, 30, 395-429 (2001)
[8] Barbier, E., Geothermal energy technology and current status: An overview, Renew. Sustain. Energy Rev., 6, 3-65 (2002)
[9] Sneddon, I. N., The distribution of stress in the Neighbourhood of a Crack in an Elastic Solid, Proc. R. Soc. A, 187, 229-260 (1946)
[10] Green, A. E.; Sneddon, I. N., The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid, Math. Proc. Cambridge Philos. Soc., 46, 159-163 (1950) · Zbl 0039.20101
[11] Khristianovic, S.; Zheltov, Y., Formation of Vertical Fractures by means of Highly Viscous Liquid, (4th World Pet Congr (1955)), 8
[12] Perkins, T. K.; Kern, L. R., Widths of Hydraulic Fractures, J. Pet. Technol., 13, 937-949 (1961)
[13] Nordgren, R. P., Propagation of a vertical Hydraulic Fracture, Soc. Pet. Eng. J., 12, 306-314 (1972)
[14] Adachi, J. I.; Detournay, E., Self-similar solution of a plane-strain fracture driven by a power-law fluid, Int. J. Numer. Anal. Methods Geomech., 26, 579-604 (2002) · Zbl 1064.74148
[15] Bunger, A. P.; Detournay, E.; Garagash, D. I., Toughness-dominated hydraulic fracture with leak-off, Int. J. Fract., 134, 175-190 (2005) · Zbl 1148.74336
[16] Adachi, J. I.; Detournay, E., Plane strain propagation of a hydraulic fracture in a permeable rock, Eng. Fract. Mech., 75, 4666-4694 (2008)
[17] Garagash, D. I.; Detournay, E.; Adachi, J. I., Multiscale Tip Asymptotics in Hydraulic Fracture with Leak-Off. Vol. 669 (2011) · Zbl 1225.76270
[18] Detournay, E., Mechanics of fractures, Annu. Rev. Fluid Mech., 48, 311-339 (2016) · Zbl 1356.74181
[19] Dontsov, E. V., An approximate solution for a penny-shaped hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off, Int. J. Fract., 205, 221-237 (2016)
[20] Dontsov, E. V., An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off, Int. J. Fract., 205, 221-237 (2017)
[21] Savitski, A. A.; Detournay, E., Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions, Int. J. Solids Struct., 39, 6311-6337 (2002) · Zbl 1032.74640
[22] Savari, S.; Whitfill, D. L.; Walker, J., Lost circulation management in naturally fractured reservoirs, (Proc SPE/IADC Middle East Drill Technol Conf Exhib 2016 (2016))
[23] Weng, X., Modeling of complex hydraulic fractures in naturally fractured formation, J. Unconv. Oil Gas Resour., 9, 114-135 (2015)
[24] Zhang, F.; Damjanac, B.; Maxwell, S., Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling, Rock Mech. Rock Eng., Vi (2019)
[25] Stephenson, B.; Galan, E.; Williams, W.; MacDonald, J.; Azad, A.; Carduner, R., Geometry and failure mechanisms from microseismic in the Duvernay shale to explain changes in well performance with drilling azimuth, (Soc Pet Eng - SPE Hydraul Fract Technol Conf Exhib 2018, HFTC 2018 (2018)), 1-20
[26] Potluri, N.; Zhu, D.; Hill, A. D., Effect of natural fractures on hydraulic fracture propagation, Soc. Pet. Eng., 94568 (2005)
[27] Davies, R. J.; Almond, S.; Ward, R. S.; Jackson, R. B.; Adams, C.; Worrall, F., Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation, Mar. Pet. Geol., 56, 239-254 (2014)
[28] Shen, X.; Shen, G., Poro-Elasto-Plastic Calculation on Fault Reactivation Caused by Hydraulic Fracturing in a Field Offshore West Africa, 8-13 (2014)
[29] Rutqvist, J.; Rinaldi, A. P.; Cappa, F.; Moridis, G. J., Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., 107, 31-44 (2013)
[30] Bratton, T.; Gillespie, P.; Li, B.; Marcinew, R.; Ray, S.; Nelson, R., The nature of naturally fractured reservoirs, (Oilf Rev Do Not Reffer To (2006)), 4-23
[31] Dershowitz, B.; LaPointe, P.; Eiben, T.; Wei, L., Integration of discrete feature network methods with conventional simulator approaches, SPE Reserv. Eval. Eng., 3, 165-170 (2000)
[32] Zhou, J.; Zhang, L.; Pan, Z.; Han, Z., Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model, J. Nat. Gas Sci. Eng., 46, 592-602 (2017)
[33] Wong, J. K., Multi-Scale Hydraulic Fracturing Stimulation in Heterogeneous Material using Dual Lattice Model (2017), University of Cambridge
[34] Keshavarzi, R.; Jahanbakhshi, R., Investigation of hydraulic and natural fracture interaction: Numerical modeling or artificial intelligence?, Eff. Sustain. Hydraul. Fract., 1039-1058 (2013)
[35] Chen, Z.; Jeffrey, R. G.; Zhang, X.; Kear, J., Finite-element simulation of a hydraulic fracture interacting with a natural fracture, SPE J., 22, 219-234 (2017)
[36] Fatahi, H.; Hossain, M. M.; Sarmadivaleh, M., Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture, J. Nat. Gas Sci. Eng., 37, 409-424 (2017)
[37] Crouch, S. L., Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution, Internat. J. Numer. Methods Engrg., 10, 301-343 (1976) · Zbl 0322.73016
[38] Xie, L.; Min, K. B.; Shen, B., Simulation of hydraulic fracturing and its interactions with a pre-existing fracture using displacement discontinuity method, J. Nat. Gas Sci. Eng., 36, 1284-1294 (2016)
[39] Xie, J.; Huang, H.; Ma, H.; Zeng, B.; Tang, J.; Yu, W., Journal of Natural Gas Science and Engineering Numerical investigation of effect of natural fractures on hydraulic-fracture propagation in unconventional reservoirs, J. Nat. Gas Sci. Eng., 54, 143-153 (2018)
[40] Nikolić, M.; Karavelić, E.; Ibrahimbegovic, A.; Miščević, P., Lattice Element Models and their Peculiarities. Vol. 25 (2018), Springer Netherlands · Zbl 1397.74168
[41] Grassl, P.; Fahy, C.; Gallipoli, D.; Wheeler, S. J., On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture, J. Mech. Phys. Solids, 75, 104-118 (2015) · Zbl 1349.74033
[42] A. Taleghani, Analysis of hydraulic fracture propagation in fractured reservoirs : an improved model for the interaction between induced and natural fractures (Ph.D. thesis), UT 2009, http://dx.doi.org/10.5829/idosi.wasj.2013.28.11.2005.
[43] Cruz, F.; Roehl, D.; Vargas, E.; do, A., An XFEM element to model intersections between hydraulic and natural fractures in porous rocks, Int. J. Rock Mech. Min. Sci., 112, 385-397 (2018)
[44] Cruz, F.; Roehl, D.; Vargas, E.; do, A., An XFEM implementation in abaqus to model intersections between fractures in porous rocks, Comput. Geotech., 112, 135-146 (2019)
[45] Gutierrez, E. R.; Mejía, S. E.C.; Roehl, D.; Romanel, C., XFEM modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations, J. Nat. Gas Sci. Eng. (2019)
[46] Rueda Cordero, J. A.; Mejia Sanchez, E. C.; Roehl, D., Integrated discrete fracture and dual porosity - Dual permeability models for fluid flow in deformable fractured media, J. Pet. Sci. Eng., 175, 644-653 (2019)
[47] Geubelle, P. H.; Baylor, J. S., Impact-induced delamination of composites: A 2D simulation, Composites B, 29, 589-602 (1998)
[48] Wu, L.; Tjahjanto, D.; Becker, G.; Makradi, A.; Jérusalem, A.; Noels, L., A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method, Eng. Fract. Mech., 104, 162-183 (2013)
[49] Dai, Q.; Ng, K., 2D cohesive zone modeling of crack development in cementitious digital samples with microstructure characterization, Constr. Build Mater., 54, 584-595 (2014)
[50] Wang, X. F.; Yang, Z. J.; Yates, J. R.; Jivkov, A. P.; Zhang, C., Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build Mater., 75, 35-45 (2015)
[51] Benedetto, M. F.; Caggiano, A.; Etse, G., Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 338, 41-67 (2018) · Zbl 1440.74374
[52] Rueda Cordero, J. A.; Mejia Sanchez, E. C.; Roehl, D., Hydromechanical modeling of unrestricted crack propagation in fractured formations using intrinsic cohesive zone model, Eng. Fract. Mech., 221, Article 106655 pp. (2019)
[53] Rueda Cordero, J. A.; Mejia Sanchez, E. C.; Roehl, D.; Pereira, L. C., Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures, Comput. Geotech., 111, 290-300 (2019)
[54] Rueda Cordero, J. A.; Mejia Sanchez, E. C.; Roehl, D., Hydraulic fracture propagation and its interaction with open and sealed natural fractures, (53nd U.S. Rock Mech. Symp. (2019))
[55] Detournay, E., Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 35-45 (2004)
[56] Chen, Z.; Bunger, A. P.; Zhang, X.; Jeffrey, R. G., Cohesive zone finite element-based modeling of hydraulic fractures, Acta Mech. Solida Sin., 22, 443-452 (2009)
[57] Chen, Z., Finite element modelling of viscosity-dominated hydraulic fractures, J. Pet. Sci. Eng., 88-89, 136-144 (2012)
[58] Carrier, B.; Granet, S., Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312-328 (2012)
[59] Manzoli, O. L.; Cleto, P. R.; Sánchez, M.; Guimarães, L. J.N.; Maedo, M. A., On the use of high aspect ratio finite elements to model hydraulic fracturing in deformable porous media, Comput. Methods Appl. Mech. Engrg., 350, 57-80 (2019) · Zbl 1441.74211
[60] Garagash, D. I., Cohesive-Zone Effects in Hydraulic Fracture Propagation Cohesive-Zone Effects in Hydraulic Fracture Propagation (2019)
[61] Mendes, C. A.T.; Gattass, M.; Roehl, D., The gema framework - An innovative framework for the development of multiphysics and multiscale simulations, (ECCOMAS Congr 2016 - Proc 7th Eur Congr Comput Methods Appl Sci Eng, Vol. 4 (2016)), 7886-7894
[62] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) · JFM 67.0837.01
[63] Terzaghi, K., Subject index, Theor. Soil Mech., 503-510 (1943)
[64] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 2899-2938 (1996) · Zbl 0929.74101
[65] Camanho, P. P.; Dávila, C. G., Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite MaterialsNasa/Tm-2002-211737, 1-37 (2002)
[66] Bandis, S. C.; Lumsden, A. C.; Barton, N. R., Fundamentals of rock joint deformation, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 249-268 (1983)
[67] Vermeer, P. A.; De Borst, R., Non-associated plasticity for soils, Concr. Rock Heron., 29, 1-64 (1984)
[68] Settari, A.; Price, H. S., Simulation of hydraulic fracturing in low-penneability reservoirs, Soc. Pet. Eng. J., 24, 141-152 (1984)
[69] Remij, E. W.; Remmers, J. J.C.; Huyghe, J. M.; Smeulders, D. M.J., The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials, Comput. Methods Appl. Mech. Engrg., 286, 293-312 (2015) · Zbl 1423.74844
[70] Coussy, O., Poromechanics (2004), John Wiley & Sons, Ltd
[71] Rice, J. R.; Cleary, M. P., Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14 (1976)
[72] Ng, K. L.A.; Small, J. C., Behavior of joints and interfaces subjected to water pressure, Comput. Geotech., 20, 71-93 (1997)
[73] Segura, J. M.; Carol, I., On zero-thickness interface elements for diffusion problems, Int. J. Numer. Anal. Methods Geomech., 28, 947-962 (2004) · Zbl 1075.76580
[74] Garagash, D. I.; Detournay, E.; Adachi, J. I., Multiscale Tip Asymptotics in Hydraulic Fracture with Leak-Off. Vol. 669 (2011) · Zbl 1225.76270
[75] Howard, G. C.; Fast, C. R., Optimum fluid characteristics for fracture extension, (Drill Prod Pract 1957 (1957)), 261-270
[76] Sobhaniaragh, B.; Haddad, M.; Mansur, W. J.; Peters, F. C., Computational modelling of multi-stage hydraulic fractures under stress shadowing and intersecting with pre-existing natural fractures, Acta Mech. (2018)
[77] Nguyen, V. P.; Lian, H.; Rabczuk, T.; Bordas, S., Modelling hydraulic fractures in porous media using flow cohesive interface elements, Eng. Geol., 225, 68-82 (2017)
[78] Guo, J.; Zhao, X.; Zhu, H.; Zhang, X.; Pan, R., Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method, J. Nat. Gas Sci. Eng., 25, 180-188 (2015)
[79] Dahi Taleghani, A.; Gonzalez, M.; Shojaei, A., Overview of numerical models for interactions between hydraulic fractures and natural fractures: Challenges and limitations, Comput. Geotech., 71, 361-368 (2016)
[80] Vandamme, L. M.; Roegiers, J. C., Poroelasticity in hydraulic fracturing simulators, JPT J. Pet. Technol., 42, 1199-1203 (1990)
[81] Kovalyshen, Y., Fluid-Driven Fracture in Poroelastic Medium (2010), University of Minnesota
[82] Zhou, J.; Chen, M.; Jin, Y.; Zhang, G., Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured rese, Int. J. Rock Mech. Min. Sci., 45, 1143-1152 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.