×

Light Higgs boson from multi-phase criticality in dynamical symmetry breaking. (English) Zbl 07408706

Summary: The Coleman-Weinberg mechanism can realise different phases of dynamical symmetry breaking. In each phase a combination of scalars, corresponding to the pseudo-Goldstone boson of scale invariance, has a loop-suppressed mass. We show that additional scalars, beyond the pseudo-Goldstone bosons, can become light at critical points in the parameter space where two different phases co-exist. We present a minimal implementation of the mechanism in multi-scalar models, detailing how loop-suppressed masses and mixings can be computed. We discuss realisations of the resulting multi-phase criticality principle and its relevance to the case of the Higgs boson.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chatrchyan, S., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716, 30-61 (2012)
[2] Aad, G., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716, 1-29 (2012)
[3] Gildener, E.; Weinberg, S., Symmetry breaking and scalar bosons, Phys. Rev. D, 13, 3333 (1976)
[4] Coleman, S. R.; Weinberg, E. J., Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D, 7, 1888-1910 (1973)
[5] Kannike, K., Vacuum stability conditions from copositivity criteria, Eur. Phys. J. C, 72, 2093 (2012)
[6] Hansen, F. F.; Janowski, T.; Langæble, K.; Mann, R. B.; Sannino, F.; Steele, T. G.; Wang, Z.-W., Phase structure of complete asymptotically free SU \(( N_c)\) theories with quarks and scalar quarks, Phys. Rev. D, 97, 6, Article 065014 pp. (2018)
[7] Buttazzo, D.; Di Luzio, L.; Ghorbani, P.; Gross, C.; Landini, G.; Strumia, A.; Teresi, D.; Wang, J.-W., Scalar gauge dynamics and Dark Matter, J. High Energy Phys., 01, Article 130 pp. (2020)
[8] Weinberg, S., Elementary particle theory of composite particles, Phys. Rev., 130, 776-783 (1963)
[9] Salvio, A.; Strumia, A., Agravity up to infinite energy, Eur. Phys. J. C, 78, 2, 124 (2018)
[10] Giudice, G. F.; Isidori, G.; Salvio, A.; Strumia, A., Softened gravity and the extension of the standard model up to infinite energy, J. High Energy Phys., 02, Article 137 pp. (2015)
[11] Kannike, K., Vacuum stability of a general scalar potential of a few fields, Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C, 78, 6, 355 (2018), (Erratum)
[12] Kannike, K.; Kubarski, A.; Marzola, L., Geometry of flat directions in scale-invariant potentials, Phys. Rev. D, 99, 11, Article 115034 pp. (2019)
[13] Kannike, K.; Loos, K.; Marzola, L., (Minima of Classically Scale-Invariant Potentials (11.2020))
[14] Cottle, R.; Habetler, G.; Lemke, C., On classes of copositive matrices, Linear Algebra Appl., 3, 3, 295-310 (1970) · Zbl 0196.05602
[15] Chataignier, L.; Prokopec, T.; Schmidt, M. G.; Swiezewska, B., Single-scale renormalisation group improvement of multi-scale effective potentials, J. High Energy Phys., 03, Article 014 pp. (2018) · Zbl 1388.81791
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.