×

Hedging direct simulation Monte Carlo bets via event splitting. (English) Zbl 07561067

Summary: We propose a new scheme for simulation of collisions with multiple possible outcomes in variable-weight DSMC computations. The scheme is applied to a 0-D ionization rate coefficient computation, and 1-D electrical breakdown simulation. We show that the scheme offers a significant (up to an order of magnitude) improvement in the level of stochastic noise over the usual acceptance-rejection algorithm, even when controlling for the slight additional computational costs. The benefits and performance of the scheme are analyzed in detail, and possible extensions are proposed.

MSC:

76Mxx Basic methods in fluid mechanics
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
82Dxx Applications of statistical mechanics to specific types of physical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Clarendon: Clarendon Oxford, England, UK
[2] Zhang, H.; Xie, M., Dsmc simulation of non-premixed combustion of H2/O2 in a Y-shaped microchannel, Nanoscale Microscale Thermophys. Eng., 19, 31-62 (2015)
[3] Sohn, I.; Li, Z.; Levin, D.; Modest, M., Coupled DSMC-PMC radiation simulations of a hypersonic reentry, J. Thermophys. Heat Transf., 26, 22-35 (2012)
[4] Zhang, J.; Goldstein, D.; Varghese, P.; Gimelshein, N.; Gimelshein, S.; Levin, D., Simulation of gas dynamics and radiation in volcanic plumes on Io, Icarus, 163, 182-197 (2003)
[5] Goldstein, D.; Varghese, P., Rarefied gas dynamics on a planetary scale, Phys. Fluids, 23, Article 030608 pp. (2011)
[6] Deng, H.; Ozawa, T.; Levin, D., Analysis of chemistry models for DSMC simulations of the atmosphere of Io, J. Thermophys. Heat Transf., 26, 36-46 (2012)
[7] Moore, C. H.; Hopkins, M. M.; Crozier, P. S.; Boerner, J. J.; Musson, L. C.; Hooper, R. W.; Bettencourt, M. T., 1D PIC-DSMC Simulations of Breakdown in Microscale Gaps, AIP Conf. Proc., vol. 1501, 629-636 (2012), AIP
[8] Fierro, A.; Moore, C.; Yee, B.; Hopkins, M., Three-dimensional kinetic modeling of streamer propagation in a nitrogen/helium gas mixture, Plasma Sources Sci. Technol., 27, Article 105008 pp. (2018)
[9] Jambunathan, R.; Levin, D. A., Kinetic, 3-D, PIC-DSMC simulations of ion thruster plumes and the backflow region, IEEE Trans. Plasma Sci., 48, 2017-2034 (2020)
[10] Lumpkin, F.; Stuart, P.; Le Beau, G., Enhanced analyses of plume impingement during Shuttle-Mir docking using a combined CFD and DSMC methodology, (31st Thermophysics Conference (1996)), 1877
[11] Wang, W.-L.; Boyd, I., Hybrid DSMC-CFD simulations of hypersonic flow over sharp and blunted bodies, (36th AIAA Thermophysics Conference (2003)), 3644
[12] Gorji, M. H.; Jenny, P., Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows, J. Comput. Phys., 287, 110-129 (2015) · Zbl 1351.82074
[13] Hepp, C.; Grabe, M.; Hannemann, K., A kinetic Fokker-Planck approach to model hard-sphere gas mixtures, Phys. Fluids, 32, Article 027103 pp. (2020)
[14] Pan, T.-J.; Stephani, K. A., Investigation of Velocity-Space Coupling Approach in DSMC for Tail-Driven Processes, AIP Conf. Proc., vol. 1786, 050017 (2016), AIP Publishing
[15] Oblapenko, G.; Goldstein, D. B.; Varghese, P.; Moore, C., A velocity space hybridization-based Boltzmann equation solver, J. Comput. Phys., 408, Article 109302 pp. (2020) · Zbl 07505625
[16] Boyd, I. D., Conservative species weighting scheme for the direct simulation Monte Carlo method, J. Thermophys. Heat Transf., 10, 579-585 (1996)
[17] Rjasanow, S.; Wagner, W., A stochastic weighted particle method for the Boltzmann equation, J. Comput. Phys., 124, 243-253 (1996) · Zbl 0883.65118
[18] Serikov, V. V.; Kawamoto, S.; Nanbu, K., Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations, IEEE Trans. Plasma Sci., 27, 1389-1398 (1999)
[19] Martin, R. S.; Cambier, J.-L., Moment Preserving Adaptive Particle Weights Using Octree Velocity Distributions for PIC Simulations, AIP Conf. Proc., vol. 1501, 872-879 (2012), AIP
[20] Araki, S.; Martin, R., Interspecies fractional collisions, Phys. Plasmas, 27, Article 033504 pp. (2020)
[21] Rjasanow, S.; Schreiber, T.; Wagner, W., Reduction of the number of particles in the stochastic weighted particle method for the Boltzmann equation, J. Comput. Phys., 145, 382-405 (1998) · Zbl 0909.65144
[22] Vikhansky, A.; Kraft, M., Conservative method for the reduction of the number of particles in the Monte Carlo simulation method for kinetic equations, J. Comput. Phys., 203, 371-378 (2005) · Zbl 1143.82316
[23] Welch, D. R.; Genoni, T. C.; Clark, R. E.; Rose, D. V., Adaptive particle management in a particle-in-cell code, J. Comput. Phys., 227, 143-155 (2007) · Zbl 1142.76047
[24] Martin, R. S.; Cambier, J.-L., Octree particle management for DSMC and PIC simulations, J. Comput. Phys., 327, 943-966 (2016) · Zbl 1373.76262
[25] Vranic, M.; Grismayer, T.; Martins, J. L.; Fonseca, R. A.; Silva, L. O., Particle merging algorithm for PIC codes, Comput. Phys. Commun., 191, 65-73 (2015) · Zbl 1344.81036
[26] Pfeiffer, M.; Mirza, A.; Munz, C.-D.; Fasoulas, S., Two statistical particle split and merge methods for particle-in-cell codes, Comput. Phys. Commun., 191, 9-24 (2015) · Zbl 1344.82052
[27] Luu, P. T.; Tückmantel, T.; Pukhov, A., Voronoi particle merging algorithm for PIC codes, Comput. Phys. Commun., 202, 165-174 (2016)
[28] Faghihi, D.; Carey, V.; Michoski, C.; Hager, R.; Janhunen, S.; Chang, C.-S.; Moser, R., Moment preserving constrained resampling with applications to particle-in-cell methods, J. Comput. Phys., Article 109317 pp. (2020) · Zbl 1435.76100
[29] Gorji, H.; Küchlin, S.; Jenny, P., Particle number control for direct simulation Monte-Carlo methodology using kernel estimates, Phys. Fluids, 31, Article 062008 pp. (2019)
[30] Martin, R. S.; Cambier, J.-L., Low Noise Fractional NTC Collisions for DSMC, AIP Conf. Proc., vol. 1501, 615-620 (2012), AIP
[31] Petkow, D.; Zaretskaya, M.; Kling, A.; Herdrich, G., Progress in probabilistic modelling of atomic spontaneous emission processes in DSMC, (Proceedings of the 5th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry (2012), ESA Special Publication), 16-19
[32] Fierro, A.; Stephens, J.; Beeson, S.; Dickens, J.; Neuber, A., Discrete photon implementation for plasma simulations, Phys. Plasmas, 23, Article 013506 pp. (2016)
[33] Schmidt, D. P.; Rutland, C., A new droplet collision algorithm, J. Comput. Phys., 164, 62-80 (2000) · Zbl 0988.76079
[34] Strand, J.; Goldstein, D., Sensitivity analysis for DSMC simulations of high-temperature air chemistry, (49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2011)), 535
[35] Strand, J.; Goldstein, D., Application of Bayesian statistical methods for the analysis of DSMC simulations of hypersonic shocks, (41st AIAA Fluid Dynamics Conference and Exhibit (2011)), 3705
[36] Pitchford, L.; Alves, L.; Bartschat, K.; Biagi, S.; Bordage, M.; Phelps, A.; Ferreira, C.; Hagelaar, G.; Morgan, W.; Pancheshnyi, S., Comparisons of sets of electron-neutral scattering cross sections and swarm parameters in noble gases: I. Argon, J. Phys. D, Appl. Phys., 46, Article 334001 pp. (2013)
[37] Zatsarinny, O.; Wang, Y.; Bartschat, K., Electron-impact excitation of argon at intermediate energies, Phys. Rev. A, 89, Article 022706 pp. (2014)
[38] Lama, S.; Zweck, J.; Goeckner, M., A higher order moment preserving reduction scheme for the Stochastic Weighted Particle Method, SIAM J. Sci. Comput., 42, A2889-A2909 (2020) · Zbl 1452.65025
[39] Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R., Electron anisotropic scattering in gases: a formula for Monte Carlo simulations, Phys. Rev. E, 65, Article 037402 pp. (2002)
[40] Hagelaar, G.; Pitchford, L., Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722 (2005)
[41] Kröger, L. C.; Kopp, W. A.; Döntgen, M.; Leonhard, K., Assessing statistical uncertainties of rare events in reactive molecular dynamics simulations, J. Chem. Theory Comput., 13, 3955-3960 (2017)
[42] McDoniel, W., On-Average Error in Zero-Dimensional DSMC (2019), Sandia National Lab. (SNL-NM): Sandia National Lab. (SNL-NM) Albuquerque, NM (United States), Technical Report
[43] Lieberman, M. A.; Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing (2005), John Wiley & Sons
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.