×

Topology optimization for surface flows. (English) Zbl 07568533

Summary: Surface flows can represent the motions of the viscous and incompressible fluid at the solid/fluid interfaces. This paper presents a topology optimization approach for surface flows and extends the design space of topology optimization of fluidic structures onto the curved surfaces in the forms of 2-manifolds corresponding to the geometrical configurations of the solid/fluid interfaces. The presented approach is implemented by filling a porous medium onto the 2-manifolds. An artificial Darcy friction is correspondingly added to the area force term of the surface Navier-Stokes equations used to describe the surface flows and the physical area forces are penalized to eliminate their existence in the fluidic regions and to avoid the invalidity of the porous medium based topology optimization model. Topology optimization for the steady and unsteady surface flows has been executed by iteratively evolving the impermeability of the porous medium, where the impermeability is interpolated by the material density derived from a design variable. The related partial differential equations are solved by using the surface finite element method. Numerical examples have been provided to demonstrate this topology optimization approach for the surface flows, including the boundary velocity driven flows, the area force driven flows and the convection-diffusion flows.

MSC:

74Pxx Optimization problems in solid mechanics
76Dxx Incompressible viscous fluids
76Mxx Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kwon, Y.; Patankar, N.; Choi, J.; Lee, J., Design of surface hierarchy for extreme hydrophobicity, Langmuir, 25, 6129-6136 (2009)
[2] Sritharan, S. S., Optimal Control of Viscous Flow (1998), SIAM: SIAM Philadelphia · Zbl 0920.76004
[3] Thimbleby, H., The Leidenfrost phenomenon, Phys. Educ., 24, 300-303 (1989)
[4] Baumgart, T.; Hess, S. T.; Webb, W. W., Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425, 821-824 (2003)
[5] Whitesides, G.; Stroock, A., Flexible methods for microfluidics, Phys. Today, 54, 42-47 (2001)
[6] Berthier, J.; Brakke, K. A.; Berthier, E., Open Microfluidics (2016), Wiley-Scrivener
[7] Bendsøe, M.; Kikuchi, N., Generating optimal topologies in optimal design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065
[8] Bendsøe, M. P.; Sigmund, O., Topology Optimization-Theory, Methods and Applications (2003), Springer: Springer Berlin · Zbl 1059.74001
[9] Cheng, L. T.; Burchard, P.; Merriman, B.; Osher, S., Motion of curves constrained on surfaces using a level-set approach, J. Comput. Phys., 175, 604-644 (2002) · Zbl 0996.65013
[10] Borrvall, T.; Petersson, J., Topology optimization of fluid in Stokes flow, Int. J. Numer. Methods Fluids, 41, 77-107 (2003) · Zbl 1025.76007
[11] Guest, J.; Prévost, J., Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, Int. J. Numer. Methods Eng., 66, 461-484 (2006) · Zbl 1110.76310
[12] Gersborg-Hansen, A.; Bendsøe, M. P.; Sigmund, O., Topology optimization of heat conduction problems using the finite volume method, Struct. Multidiscip. Optim., 31, 251-259 (2006) · Zbl 1245.80011
[13] Kreissl, S.; Pingen, G.; Maute, K., An explicit level-set approach for generalized shape optimization of fluids with the lattice Boltzmann method, Int. J. Numer. Methods Fluids, 65, 496-519 (2011) · Zbl 1428.74178
[14] Deng, Y.; Liu, Z.; Zhang, P.; Liu, Y.; Wu, Y., Topology optimization of unsteady incompressible Navier-Stokes flows, J. Comput. Phys., 230, 6688-6708 (2011) · Zbl 1408.76132
[15] Deng, Y.; Liu, Z.; Wu, J.; Wu, Y., Topology optimization of steady Navier-Stokes flow with body force, Comput. Methods Appl. Mech. Eng., 255, 306-321 (2013) · Zbl 1297.76048
[16] Deng, Y.; Liu, Z.; Wu, Y., Topology optimization of steady and unsteady incompressible Navier-Stokes flows driven by body forces, Struct. Multidiscip. Optim., 47, 555-570 (2013) · Zbl 1274.76188
[17] Dilgen, C. B.; Dilgen, S. B.; Fuhrman, D. R.; Sigmund, O.; Lazarov, B. S., Topology optimization of turbulent flows, Comput. Methods Appl. Mech. Eng., 331, 363-393 (2018) · Zbl 1439.74265
[18] Yoon, G. H., Topology optimization for turbulent flow with Spalart-Allmaras model, Comput. Methods Appl. Mech. Eng., 303, 288-311 (2016) · Zbl 1425.74382
[19] Deng, Y.; Liu, Z.; Wu, Y., Topology optimization of capillary, two-phase flow problems, Commun. Comput. Phys., 22, 1413-1438 (2017) · Zbl 1488.76041
[20] Gregersen, M. M.; Okkels, F.; Bazant, M. Z.; Bruus, H., Topology and shape optimization of induced-charge electro-osmotic micropumps, New J. Phys., 11, Article 075019 pp. (2009)
[21] Deng, Y.; Zhou, T.; Liu, Z.; Wu, Y.; Qian, S.; Korvink, J. G., Topology optimization of electrode patterns for electroosmotic micromixer, Int. J. Heat Mass Transf., 126, 1299-1315 (2018)
[22] Pingen, G.; Maute, K., Optimal design for non-Newtonian flows using a topology optimization approach, Comput. Math. Appl., 59, 2340-2350 (2010) · Zbl 1193.76113
[23] Alonso, D. H.; Saenz, J. S.R.; Silva, E. C.N., Optimal design for non-Newtonian flows using a topology optimization approach, Struct. Multidiscip. Optim. (2020)
[24] Alexandersen, J.; Andreasen, C. S., A review of topology optimisation for fluid-based problems, Fluids, 5, 29 (2020)
[25] Vermaak, N.; Michailidis, G.; Parry, G.; Estevez, R.; Allaire, G.; Bréchet, Y., Material interface effects on the topology optimization of multi-phase structures using a level set method, Struct. Multidiscip. Optim., 50, 623-644 (2014)
[26] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067 (1997)
[27] Gao, T.; Zhang, W., A mass constraint formulation for structural topology optimization with multiphase materials, Int. J. Numer. Methods Eng., 88, 774-796 (2011) · Zbl 1242.74070
[28] Luo, Y. J.; Kang, Z.; Yue, Z. F., Maximal stiffness design of two-material structures by topology optimization with nonprobabilistic reliability, AIAA J., 50, 1993-2003 (2012)
[29] Wang, M. Y.; Wang, X. M., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Eng., 193, 469-496 (2004) · Zbl 1060.74585
[30] Zhou, S. W.; Wang, M. Y., Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition, Struct. Multidiscip. Optim., 33, 89-111 (2007) · Zbl 1245.74077
[31] Vogiatzis, P.; Ma, M.; Chen, S.; Gu, X., Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping, Comput. Methods Appl. Mech. Eng., 328, 477-497 (2018) · Zbl 1439.74298
[32] Krog, L.; Olhoff, N., Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives, Comput. Struct., 72, 535-563 (1996) · Zbl 1050.74644
[33] Ansola, R.; Canales, J.; Tárrago, J. A.; Rasmussen, J., An integrated approach for shape and topology optimization of shell structures, Comput. Struct., 80, 449-458 (2002)
[34] Hassani, B.; Tavakkoli, S. M.; Ghasemnejad, H., Simultaneous shape and topology optimization of shell structures, Struct. Multidiscip. Optim., 48, 221-233 (2013) · Zbl 1274.74340
[35] Lochner-Aldinger, I.; Schumacher, A., Homogenization method, (Adriaenssens, S.; Block, P.; Veenendaal, D.; Williams, C., Shell Structures for Architecture-Form Finding and Optimization (2014), Routledge: Routledge New York)
[36] Clausen, A.; Andreassen, E.; Sigmund, O., Topology optimization of 3D shell structures with porous infill, Acta Mech. Sin., 33, 778-791 (2017) · Zbl 1381.74177
[37] Dienemann, R.; Schumacher, A.; Fiebig, S., Topology optimization for finding shell structures manufactured by deep drawing, Struct. Multidiscip. Optim., 56, 473-485 (2017)
[38] Yoon, G. H., Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation, Int. J. Numer. Methods Eng., 82, 591-616 (2010) · Zbl 1188.74048
[39] Lundgaard, C.; Alexandersen, J.; Zhou, M.; Andreasen, C. S.; Sigmund, O., Revisiting density-based topology optimization for fluid-structure-interaction problems, Struct. Multidiscip. Optim., 58, 969-995 (2018)
[40] Andreasen, C. S., A framework for topology optimization of inertial microfluidic particle manipulators, Struct. Multidiscip. Optim. (2020)
[41] Aulig, N.; Lepenies, I., A topology optimization interface for LS-DYNA, (11. LS-DYNA Forum. 11. LS-DYNA Forum, Ulm (2012))
[42] Behrou, R.; Lawry, M.; Maute, K., Level set topology optimization of structural problems with interface cohesion, Int. J. Numer. Methods Eng., 112, 990-1016 (2017)
[43] Raulli, M.; Maute, K., Topology optimization of electrostatically actuated microsystems, Struct. Multidiscip. Optim., 30, 342-359 (2005)
[44] Deng, Y.; Mager, D.; Bai, Y.; Zhou, T.; Liu, Z.; Wen, L.; Wu, Y.; Korvink, J. G., Inversely designed micro-textures for robust Cassie-Baxter mode of super-hydrophobicity, Comput. Methods Appl. Mech. Eng., 341, 113-132 (2018) · Zbl 1440.74253
[45] Deng, Y.; Liu, Z.; Wang, Y.; Duan, H.; Korvink, J. G., Micro-textures inversely designed with overlayed-lithography manufacturability for wetting behavior in Cassie-Baxter status, Appl. Math. Model., 74, 621-640 (2019) · Zbl 1481.74590
[46] Deng, Y.; Zhang, W.; Liu, Z.; Zhu, J.; Korvink, J. G., Fiber bundle topology optimization of hierarchical microtextures for wetting behavior in Cassie-Baxter mode, Struct. Multidiscip. Optim. (2020)
[47] Deng, Y.; Liu, Z.; Korvink, J. G., Topology optimization on two-dimensional manifolds, Comput. Methods Appl. Mech. Eng., 364, Article 112937 pp. (2020) · Zbl 1442.74167
[48] Arroyo, M.; DeSimone, A., Relaxation dynamics of fluid membranes, Phys. Rev. E, 79, Article 031915 pp. (2009)
[49] Brenner, H., Interfacial Transport Processes and Rheology (2013), Elsevier
[50] Rahimi, M.; DeSimone, A.; Arroyo, M., Curved fluid membranes behave laterally as effective viscoelastic media, Soft Matter, 9, 11033-11045 (2013)
[51] Scriven, L., Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng. Sci., 12, 98-108 (1960)
[52] Fries, T. P., Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds, Int. J. Numer. Methods Fluids, 88, 55-78 (2018)
[53] Reuther, S.; Voigt, A., Solving the incompressible surface Navier-Stokes equation by surface finite elements, Phys. Fluids, 30, Article 012107 pp. (2018)
[54] Scriven, L., Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng. Sci., 12, 98-108 (1960)
[55] Reusken, A.; Zhang, Y., Numerical simulation of incompressible two-phase flows with a Boussinesq-Scriven surface stress tensor, Int. J. Numer. Methods Fluids, 73, 1042-1058 (2013) · Zbl 1455.76092
[56] Lazarov, B.; Sigmund, O., Filters in topology optimization based on Helmholtz type differential equations, Int. J. Numer. Methods Eng., 86, 765-781 (2011) · Zbl 1235.74258
[57] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[58] Guest, J.; Prévost, J.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng., 61, 238-254 (2004) · Zbl 1079.74599
[59] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints (2009), Springer: Springer Berlin · Zbl 1167.49001
[60] Dziuk, G.; Elliott, C. M., Finite element methods for surface PDEs, Acta Numer., 22, 289-396 (2013) · Zbl 1296.65156
[61] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1998), SIAM: SIAM Philadelphia · Zbl 0908.65055
[62] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics (2006), Oxford University Press
[63] Svanberg, K., The method of moving asymptotes: a new method for structural optimization, Int. J. Numer. Methods Eng., 24, 359-373 (1987) · Zbl 0602.73091
[64] Süli, E.; Mayers, D., An Introduction to Numerical Analysis (2003), Cambridge University Press · Zbl 1033.65001
[65] https://www.pardiso-project.org/
[66] Andreasen, C. S.; Gersborg, A. R.; Sigmund, O., Topology optimization of microfluidic mixers, Int. J. Numer. Methods Fluids, 61, 498-513 (2009) · Zbl 1172.76014
[67] Deng, Y.; Liu, Z.; Zhang, Ping; Liu, Y.; Gao, Q.; Wu, Y., A flexible layout design method for passive micromixers, Biomed. Microdevices, 14, 929-945 (2012)
[68] Brezzi, F.; Pitkäranta, J., On the Stabilization of Finite Element Approximations of the Stokes Equations (1984), Vieweg+Teubner Verlag: Vieweg+Teubner Verlag Wiesbaden · Zbl 0552.76002
[69] Donea, J.; Hureta, A., Finite Element Methods for Flow Problems (2003), Wiley: Wiley West Sussex
[70] Zeidler, E., Nonlinear Functional Analysis Its Applications. I, Fixed-Point Theorems (1986), Springer · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.