×

On the shape and size of granular roll waves. (English) Zbl 1515.76149

Summary: This paper describes, from a theoretical point of view, the appearance and characteristics of granular roll waves in chute flow, and the maximal size these waves can attain for a given influx of material into the system. Granular roll waves are steady travelling wave solutions of the generalized Saint-Venant equations for flowing granular matter, appearing when the Froude number \(Fr\) of the incoming flow exceeds a critical value, \(Fr > Fr_{cr}\). We focus upon the phase space of the corresponding dynamical system, where the roll waves take the form of a stable limit cycle around an unstable fixed point; this limit cycle gives precise information on the size and periodicity of the roll wave. It is found that, for any given value of \(Fr\), the limit cycle cannot become arbitrarily large because it is constrained by a homoclinic loop in phase space. Roll waves of larger amplitude can be generated by increasing the Froude number \(Fr\).

MSC:

76T25 Granular flows
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balmforth, N.J. & Mandre, S.2004Dynamics of roll waves. J. Fluid Mech.514, 1-33. · Zbl 1067.76009
[2] Börzsönyi, T., Hasley, T.C. & Ecke, R.E.2005Two scenarios for avalanche dynamics in inclined granular layers. Phys. Rev. Lett.94, 208001.
[3] Boudet, J.F., Amarouchene, B., Bonnier, B. & Kellay, H.2007The granular jump. J. Fluid Mech.572, 413-431. · Zbl 1106.76302
[4] Cornish, V.1910Waves of the Sea and Other Water Waves. T. Fischer Unwin.
[5] Cornish, V.1934Ocean Waves and Kindred Geophysical Phenomena. Cambridge University Press.
[6] Di Cristo, C., Iervolino, M., Vacca, A. & Zanuttigh, B.2009Roll-waves prediction in dense granular flows. J. Hydrol.377, 50-58.
[7] Dressler, R.F.1949 Mathematical solutions of the problem of roll waves in inclined open channels. Commun. Pure Appl. Math.2 (2-3), 149-194. · Zbl 0038.38405
[8] Edwards, A.N. & Gray, J.M.N.T.2015Erosion-deposition waves in shallow granular free-surface flows. J. Fluid Mech.762, 35-67.
[9] Edwards, A.N., Viroulet, S., Kokelaar, B.P. & Gray, J.M.N.T.2017Formation of levees, troughs and elevated channels by avalanches on erodible slopes. J. Fluid Mech.823, 278-315. · Zbl 1415.76709
[10] Edwards, A.N., Russell, A.S., Johnson, C.G. & Gray, J.M.N.T.2019Frictional hysteresis and particle deposition in granular free-surface flows. J. Fluid Mech.875, 1058-1095. · Zbl 1430.76476
[11] Edwards, A.N., Viroulet, S., Johnson, C.G. & Gray, J.M.N.T.2021Erosion-deposition dynamics and long distance propagation of granular avalanches. J. Fluid Mech.915, A9. · Zbl 1461.76499
[12] Faug, T., Childs, P., Wyburn, E. & Einav, I.2015Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids27, 073304.
[13] Faug, T.2015Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Phys. Rev. E92, 062310.
[14] Fei, J., Jie, Y., Xiong, H. & Wu, Z.2021Granular roll waves along a long chute: from formation to collapse. Powder Technol.377, 553-564.
[15] Forterre, Y. & Pouliquen, O.2003Long-surface-wave instability in dense granular flows. J. Fluid Mech.486, 21-50. · Zbl 1156.76458
[16] Forterre, Y.2006Kapiza waves as a test for three-dimensional granular flow rheology. J. Fluid Mech.563, 123-132. · Zbl 1100.76067
[17] Fowler, A.2011Mathematical Geoscience. Springer. · Zbl 1219.86001
[18] 2004On dense granular flows. Eur. Phys. J. E14, 341-365.
[19] Gray, J.M.N.T. & Cui, X.2007Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech.579, 113-136. · Zbl 1175.76151
[20] Gray, J.M.N.T. & Edwards, A.N.2014A depth-averaged \(\mu (I)\)-rheology for shallow granular free-surface flows. J. Fluid Mech.755, 503-534. · Zbl 1330.76137
[21] Hákonardóttir, K.M. & Hogg, A.J.2005Oblique shocks in rapid granular flows. Phys. Fluids17, 077101. · Zbl 1187.76202
[22] Johnson, C.G. & Gray, J.M.N.T.2011Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech.675, 87-116. · Zbl 1241.76411
[23] Kanellopoulos, G., Razis, D. & Van Der Weele, K.2021On the structure of granular jumps: the dynamical systems approach. J. Fluid Mech.912, A54. · Zbl 1494.76104
[24] Kanellopoulos, G.2021The granular monoclinal wave: a dynamical systems survey. J. Fluid Mech.921, A6. · Zbl 1469.76137
[25] Kranenburg, C.1992On the evolution of roll waves. J. Fluid Mech.245, 249-261. · Zbl 0765.76011
[26] Lagrée, P.-Y., Saingier, G., Deboeuf, S., Staron, L. & Popinet, S.2017 Granular front for flow down a rough incline: about the value of the shape factor in depths averaged models. In Proceedings of the “Powders & Grains 2017” (ed. F. Radjai, S. Nezamabadi, S. Luding & J.Y. Delenne), EPJ Web of Conferences, EDP Sciences Publ., vol. 140, 03046.
[27] Méjean, S., Faug, T. & Einav, I.2017A general relation for standing normal jumps in both hydraulic and dry granular flows. J. Fluid Mech.816, 331-351. · Zbl 1383.76524
[28] Méjean, S., Guillard, F., Faug, T. & Einav, I.2020Length of standing jumps along granular flows down smooth inclines. Phys. Rev. Fluids5, 034303.
[29] Merkin, J.H. & Needham, D.J.1986An infinite period bifurcation arising in roll waves down an open inclined channel. Proc. R. Soc. Lond. A405, 103-116. · Zbl 0593.76024
[30] Needham, D.J. & Merkin, J.H.1984On roll waves down an open inclined channel. Proc. R. Soc. Lond. A394, 259-278. · Zbl 0553.76013
[31] Pouliquen, O.1999Scaling laws in granular flows down rough inclined planes. Phys. Fluids11, 542-548. · Zbl 1147.76477
[32] Pouliquen, O. & Forterre, Y.2002Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech.453, 113-151. · Zbl 0987.76522
[33] Razis, D., Edwards, A.N., Gray, J.M.N.T. & Van Der Weele, K.2014Arrested coarsening of granular roll waves. Phys. Fluids26, 123305. · Zbl 1323.76118
[34] Razis, D., Kanellopoulos, G. & Van Der Weele, K.2018The granular monoclinal wave. J. Fluid Mech.843, 810-846. · Zbl 1444.76124
[35] Razis, D., Kanellopoulos, G. & Van Der Weele, K.2019A dynamical systems view of granular flow: from monoclinal flood waves to roll waves. J. Fluid Mech.869, 143-181. · Zbl 1415.76717
[36] Rocha, F.M., Johnson, C.G. & Gray, J.M.N.T.2019Self-channelisation and levee formation in monodisperse granular flows. J. Fluid Mech.876, 591-641. · Zbl 1421.76251
[37] Russell, A.S., Johnson, C.G., Edwards, A.N., Viroulet, S., Rocha, F.M. & Gray, J.M.N.T.2019Retrogressive failure of a static granular layer on an inclined plane. J. Fluid Mech.869, 313-340. · Zbl 1415.76718
[38] Saingier, G., Deboeuf, S. & Lagrée, P.-Y.2016On the front shape of an inertial granular flow down a rough incline. Phys. Fluids28, 053302.
[39] Savage, S.B. & Hutter, K.1989The motion of a finite mass of granular material down a rough incline. J. Fluid Mech.199, 177-215. · Zbl 0659.76044
[40] Schiesser, W.E.1991The Numerical Method of Lines: Integration of Partial Differential Equations. Academic. · Zbl 0763.65076
[41] Viroulet, S., Baker, J.L., Edwards, A.N., Johnson, C.G., Gjaltema, C., Clavel, P. & Gray, J.M.N.T2017Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech.815, 77-116. · Zbl 1383.76526
[42] Viroulet, S., Baker, J.L., Rocha, F.M., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T2018The kinematics of bidisperse granular roll waves. J. Fluid Mech.848, 836-875. · Zbl 1404.76280
[43] Whitham, G.B.1974Linear and Nonlinear Waves. John Wiley & Sons. · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.