×

Efficiency of profinite rigidity of triangle groups. (English) Zbl 07615096

Summary: It is already known that finitely-generated Fuchsian groups are profinitely rigid among all lattices of connected Lie groups by the result of Bridson, Conder and Reid. Hence the triangle groups are distinguished among themselves by their finite quotients. We focus on the question about quantifying the size of a quotient which separates two triangle groups and give an explicit upper bound.

MSC:

20E18 Limits, profinite groups
57M05 Fundamental group, presentations, free differential calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bridson, M. R.; Conder, M. D E.; Reid, A. W., Determining Fuchsian groups by their finite quotients, Israel J. Math., 214, 1, 1-41 (2016) · Zbl 1361.20037 · doi:10.1007/s11856-016-1341-6
[2] Bridson, M. R.; McReynolds, D. B.; Reid, A. W., Absolute profinite rigidity and hyperbolic geometry, Ann. of Math., 192, 3, 679-719 (2020) · Zbl 1455.57028 · doi:10.4007/annals.2020.192.3.1
[3] DeBlois, J.; Miller, N.; Patel, P., Effective virtual and residual properties of some arithmetic hyperbolic 3-manifolds, Trans. Amer. Math. Soc., 373, 11, 8219-8257 (2020) · Zbl 07269836 · doi:10.1090/tran/8190
[4] Hagen, M. F.; Patel, P., Quantifying separability in virtually special groups, Pacific J. Math., 284, 1, 103-120 (2016) · Zbl 1364.20014 · doi:10.2140/pjm.2016.284.103
[5] Larsen, M.; Lubotzky, A.; Marion, C., Deformation theory and finite simple quotients of triangle groups I, J. Eur. Math. Soc., 16, 1349-1375 (2014) · Zbl 1312.20030 · doi:10.4171/JEMS/463
[6] Larsen, M.; Lubotzky, A.; Marion, C., Deformation theory and finite simple quotients of triangle groups II, Groups Geom. Dyn., 8, 811-836 (2014) · Zbl 1312.20031 · doi:10.4171/GGD/249
[7] Linnik, U. V., On the least prime in an arithmetic progression I. The basic theorem, Rec. Math. (Mat. Sbornik) N.S., 15, 57, 139-178 (1944) · Zbl 0063.03584
[8] Louder, L.; McReynolds, D. B.; Patel, P., Zariski closures and subgroup separability, Selecta Math. (N.S.), 23, 3, 2019-2017 (2017) · Zbl 1376.20031 · doi:10.1007/s00029-016-0300-8
[9] Macbeath, A. M., Generators of the fractional linear groups, Proc. Sympos. Pure Math., 12, 14-32 (1969) · Zbl 0192.35703 · doi:10.1090/pspum/012/0262379
[10] Noskov, G. A.; Remeslennikov, V. N.; Romankov, V. A., Infinite groups (Russian), Algebra. Topol. Geom., 17, 65-157 (1979) · Zbl 0429.20001
[11] Reid, A. W., Profinite rigidity, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II, 1193-1216 (2018), Hackensack, NJ: World Sci. Publ., Hackensack, NJ · Zbl 1445.20026
[12] Ribes, L.; Zalesskii, P., Profinite Groups (2000), New York: Springer-Verlag, New York · Zbl 0949.20017 · doi:10.1007/978-3-662-04097-3
[13] Rolfsen, D., Knots and Links (2003), New York: AMS Chelsea Press, New York · Zbl 0339.55004
[14] Scott, P., The geometries of 3-manifolds, Bull. London Math. Soc., 15, 401-487 (1983) · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[15] Wilton, H.; Zalesskii, P., Distinguishing geometries using finite quotients, Geom. Topol., 21, 345-384 (2017) · Zbl 1361.57023 · doi:10.2140/gt.2017.21.345
[16] Xylouris, T., Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, 404 (2011), Bonn: Universität Bonn, Mathematisches Institut, Bonn · Zbl 1339.11080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.