×

Frequentist conditional variance for nonlinear mixed-effects models. (English) Zbl 07618103

Summary: Nonlinear mixed-effects models are commonly used in fisheries and ecological studies to account for complex relationships and dependencies in data. These models involve both fixed parameters to estimate and random-effects (REs) to predict. This paper addresses the inferential setting involving repeated sampling of the data but conditional on the unknown REs. This setting is more appropriate when the focus is on statistical inferences based on the specific values of REs that generated the data. Assuming the Laplace approximation is appropriate to derive the marginal likelihood and following a frequentist framework, this work derives RE-conditional bias approximations of maximum likelihood parameter estimators and empirical Bayes RE predictors, as well as the conditional covariance and mean squared error (MSE) among parameter estimators and RE predictors. It is shown that the RE-conditional MSE can be approximated with the unconditional MSE. Simulation studies demonstrate that the variance and MSE approximations are reasonably accurate for relevant sample sizes. Considering the finite-sample RE-conditional biases in the parameter estimates and RE predictions, the MSE is more appropriate for constructing confidence intervals (CIs), and the CI coverage of REs should be interpreted as the average coverage over a range of REs or over repeated generation of REs.

MSC:

62Jxx Linear inference, regression
62Fxx Parametric inference
62Gxx Nonparametric inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berger, JO; Liseo, B.; Wolpert, RL, Integrated likelihood methods for eliminating nuisance parameters, Stat Sci, 14, 1, 1-28 (1999) · Zbl 1059.62521 · doi:10.1214/ss/1009211804
[2] Bhattacharya, A.; Pati, D.; Pillai, NS; Dunson, DB, Dirichlet-Laplace priors for optimal shrinkage, J Am Stat Assoc, 110, 512, 1479-1490 (2015) · Zbl 1373.62368 · doi:10.1080/01621459.2014.960967
[3] Breivik, ON; Aanes, F.; Søvik, G.; Aglen, A.; Mehl, S.; Johnsen, E., Predicting abundance indices in areas without coverage with a latent spatio-temporal gaussian model, ICES J Mar Sci, 78, 6, 2031-2042 (2021) · doi:10.1093/icesjms/fsab073
[4] Brown, PE; De Jong, P., Nonparametric smoothing using state space techniques, Can J Stat, 29, 1, 37-50 (2001) · Zbl 1013.62042 · doi:10.2307/3316049
[5] Cadigan, NG, A state-space stock assessment model for northern cod, including under-reported catches and variable natural mortality rates, Can J Fish Aquat Sci, 73, 2, 296-308 (2015) · doi:10.1139/cjfas-2015-0047
[6] Deroba, J.; Butterworth, DS; Methot, R. Jr; De Oliveira, J.; Fernandez, C.; Nielsen, A.; Cadrin, S.; Dickey-Collas, M.; Legault, C.; Ianelli, J., Simulation testing the robustness of stock assessment models to error: some results from the ices strategic initiative on stock assessment methods, ICES J Mar Sci, 72, 1, 19-30 (2015) · doi:10.1093/icesjms/fst237
[7] Fahrmeir, L.; Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann Stat, 1, 342-368 (1985) · Zbl 0594.62058
[8] Feller, W., An introduction to probability theory and its applications (2008), New York: Wiley, New York · Zbl 0138.10207
[9] Fournier, DA; Skaug, HJ; Ancheta, J.; Ianelli, J.; Magnusson, A.; Maunder, MN; Nielsen, A.; Sibert, J., Ad model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models, Optim Methods Softw, 27, 2, 233-249 (2012) · Zbl 1242.90230 · doi:10.1080/10556788.2011.597854
[10] Hall, DB; Clutter, M., Multivariate multilevel nonlinear mixed effects models for timber yield predictions, Biometrics, 60, 1, 16-24 (2004) · Zbl 1130.62391 · doi:10.1111/j.0006-341X.2004.00163.x
[11] Harring, JR; Blozis, SA, Fitting correlated residual error structures in nonlinear mixed-effects models using sas proc nlmixed, Behav Res Methods, 46, 2, 372-384 (2014) · doi:10.3758/s13428-013-0397-z
[12] He, H.; Severini, T., Integrated likelihood inference in semiparametric regression models, Metron, 72, 2, 185-199 (2014) · Zbl 1316.62051 · doi:10.1007/s40300-014-0042-3
[13] He, H.; Severini, TA, A flexible approach to inference in semiparametric regression models with correlated errors using gaussian processes, Comput Stat Data Anal, 103, 316-329 (2016) · Zbl 1466.62093 · doi:10.1016/j.csda.2016.05.010
[14] Higham, NJ, Computing the nearest correlation matrix-a problem from finance, IMA J Numer Anal, 22, 3, 329-343 (2002) · Zbl 1006.65036 · doi:10.1093/imanum/22.3.329
[15] Jiang, J.; Jia, H.; Chen, H., Maximum posterior estimation of random effects in generalized linear mixed models, Statistica Sinica, 1, 97-120 (2001) · Zbl 0967.62046
[16] Johnson, TR; Kim, J-S, A generalized estimating equations approach to mixed-effects ordinal probit models, Br J Math Stat Psychol, 57, 2, 295-310 (2004) · doi:10.1348/0007110042307177
[17] Kantas, N.; Doucet, A.; Singh, SS; Maciejowski, J.; Chopin, N., On particle methods for parameter estimation in state-space models, Stat Sci, 30, 3, 328-351 (2015) · Zbl 1332.62096 · doi:10.1214/14-STS511
[18] Kass, RE; Steffey, D., Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models), J Am Stat Assoc, 84, 407, 717-726 (1989) · doi:10.1080/01621459.1989.10478825
[19] Kristensen K, Nielsen A, Berg CW, Skaug H, Bell B (2015) Tmb: automatic differentiation and Laplace approximation. arXiv preprint arXiv:1509.00660
[20] Lindstrom, MJ; Bates, DM, Nonlinear mixed effects models for repeated measures data, Biometrics, 1, 673-687 (1990) · doi:10.2307/2532087
[21] Marra, G.; Wood, SN, Coverage properties of confidence intervals for generalized additive model components, Scand J Stat, 39, 1, 53-74 (2012) · Zbl 1246.62058 · doi:10.1111/j.1467-9469.2011.00760.x
[22] Maunder, MN; Punt, AE, A review of integrated analysis in fisheries stock assessment, Fish Res, 142, 61-74 (2013) · doi:10.1016/j.fishres.2012.07.025
[23] McCulloch, CE; Neuhaus, JM, Prediction of random effects in linear and generalized linear models under model misspecification, Biometrics, 67, 1, 270-279 (2011) · Zbl 1216.62177 · doi:10.1111/j.1541-0420.2010.01435.x
[24] Meyer, R.; Millar, RB, Bugs in bayesian stock assessments, Can J Fish Aquat Sci, 56, 6, 1078-1087 (1999) · doi:10.1139/f99-043
[25] Morgan M, Rogers R, Ings D, Wheeland L (2020) Assessment of the american plaice (hippoglossoides platessoides) stock in nafo subdivision 3ps in 2019. Tech. rep., Canadian Science Advisory Secretariat (CSAS) 2020/019. iv+ 17 p. URL https://waves-vagues.dfo-mpo.gc.ca/Library/40888149.pdf
[26] Nielsen, A.; Berg, CW, Estimation of time-varying selectivity in stock assessments using state-space models, Fish Res, 158, 96-101 (2014) · doi:10.1016/j.fishres.2014.01.014
[27] Pedersen, MW; Berg, CW, A stochastic surplus production model in continuous time, Fish Fish, 18, 2, 226-243 (2017) · doi:10.1111/faf.12174
[28] Perreault, AM; Wheeland, LJ; Morgan, MJ; Cadigan, NG, A state-space stock assessment model for American plaice on the grand bank of newfoundland, J Northw Atl Fish Sci, 51, 45-104 (2020) · doi:10.2960/J.v51.m727
[29] Pinheiro, JC; Bates, DM, Approximations to the log-likelihood function in the nonlinear mixed-effects model, J Comput Graph Stat, 4, 1, 12-35 (1995)
[30] Robinson, GK, That blup is a good thing: The estimation of random effects, Statistical science, 1, 15-32 (1991) · Zbl 0955.62500
[31] Severini, TA, Integrated likelihood functions for non-Bayesian inference, Biometrika, 94, 3, 529-542 (2007) · Zbl 1134.62011 · doi:10.1093/biomet/asm040
[32] Tibshirani, R., Regression shrinkage and selection via the lasso, J Roy Stat Soc: Ser B (Methodol), 58, 1, 267-288 (1996) · Zbl 0850.62538
[33] Valpine, PD; Hilborn, R., State-space likelihoods for nonlinear fisheries time-series, Can J Fish Aquat Sci, 62, 9, 1937-1952 (2005) · doi:10.1139/f05-116
[34] Wand, MP, Smoothing and mixed models, Comput Stat, 18, 2, 223-249 (2003) · Zbl 1050.62049 · doi:10.1007/s001800300142
[35] Weiss NA (2005) A course in probability
[36] Wood, SN, Inference and computation with generalized additive models and their extensions, TEST, 29, 2, 307-339 (2020) · Zbl 1447.62085 · doi:10.1007/s11749-020-00711-5
[37] Wood, SN; Scheipl, F.; Faraway, JJ, Straightforward intermediate rank tensor product smoothing in mixed models, Stat Comput, 23, 3, 341-360 (2013) · Zbl 1322.62197 · doi:10.1007/s11222-012-9314-z
[38] Zheng, N.; Cadigan, N., Frequentist delta-variance approximations with mixed-effects models and tmb, Comput Stat Data Anal, 160, 107227 (2021) · Zbl 07422731 · doi:10.1016/j.csda.2021.107227
[39] Zheng, N.; Robertson, M.; Cadigan, N.; Zhang, F.; Morgan, J.; Wheel, L., Spatiotemporal variation in maturation: a case study with american plaice (hippoglossoides platessoides) on the grand bank off newfoundland, Can J Fish Aquat Sci, 77, 10, 1688-1699 (2020) · doi:10.1139/cjfas-2020-0017
[40] Zheng, N.; Sutradhar, BC, Inferences in semi-parametric dynamic mixed models for longitudinal count data, Ann Inst Stat Math, 70, 1, 215-247 (2018) · Zbl 1421.62042 · doi:10.1007/s10463-016-0590-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.