×

A class of PSO-tuned controllers in Lorenz chaotic system. (English) Zbl 07619068

Summary: This paper considers the optimal robust control of chaotic systems subject to parameter perturbations and measurement noise. Three novel dynamic tracking controllers are designed herein to suppress the chaotic behaviour in Lorenz systems under practical constraints. The dynamic controllers allow for extra improvements towards optimal and robust tracking but their design is challenging in the chaotic system. Given a single measured state only, the single-state feedback controllers are optimally tuned using high-performance heuristic Particle Swarm Optimization (PSO) algorithm with a constrained multi-objective function focusing mainly on the Integral Absolute Error (IAE). The controlled system stability is ensured through Routh-Hurwitz stability criteria where control parameters are further tuned using a metaheuristic PSO algorithm to ensure faster transients with minimum errors when tracking desired state trajectories and also to ensure robustness to parameter variations and external disturbances in the chaotic system. Different designs are tested through extensive simulations and comparisons where the proposed PSO-tuned PD-tracking controller is proved superior for not only suppressing the chaotic behaviour and reducing the transients but also for their high robustness to parameter uncertainties and external disturbances.

MSC:

93-XX Systems theory; control
90-XX Operations research, mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdelmalek, S.; Dali, A.; Bettayeb, M., An improved observer-based integral state feedback (OISF) control strategy of flyback converter for photovoltaic systems, (2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) (2018), IEEE), 1-6
[2] Abdelmalek, S.; Dali, A.; Bettayeb, M.; Bakdi, A., A new effective robust nonlinear controller based on PSO for interleaved DC-DC boost converters for fuel cell voltage regulation, Soft Comput., 24, 17051-17064 (2020)
[3] Aihara, K., Chaos and its applications, Procedia Iutam, 5, 199-203 (2012)
[4] Baek, J., Adaptive fuzzy bilinear feedback control design for synchronization of TS fuzzy bilinear generalized Lorenz system with uncertain parameters, Phys. Lett. A, 374, 1827-1834 (2010) · Zbl 1236.34088
[5] Chen, Y.; Yi, C., Research on a new singularity-free controller for uncertain Lorenz system, IEEE Access, 7, Article 136290-8 (2019)
[6] Chen, M.; Zhou, D.; Shang, Y., Nonlinear feedback control of Lorenz system, Chaos Solitons Fractals, 21, 295-304 (2004) · Zbl 1049.93036
[7] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H., Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Trans. Circuits Syst. II Analog Digital Signal Process., 40, 626-633 (1993)
[8] Dali, A.; Abdelmalek, S.; Bettayeb, M., A new combined observer-state feedback (COSF) controller of PWM buck converter, (2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) (2018), IEEE), 1-6
[9] Dali, A.; Abdelmalek, S.; Nekkache, A.; Bouharchouche, A., Development of a sizing interface for photovoltaic-wind microgrid based on PSO-LPSP optimization strategy, (2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA) (2018), IEEE), 1-5
[10] Deng, Y.; Hu, H.; Xiong, W.; Xiong, N. N.; Liu, L., Analysis and design of digital chaotic systems with desirable performance via feedback control, IEEE Trans. Syst. Man Cybern. Syst., 45, 1187-1200 (2015)
[11] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2011), Pearson
[12] Doye, I. N.; Salama, K. N.; Laleg-Kirati, T.-M., Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems, IEEE/CAA J. Autom. Sin., 6, 268-277 (2018)
[13] El-Gohary, A.; Sarhan, A., Optimal control and synchronization of Lorenz system with complete unknown parameters, Chaos Solitons Fractals, 30, 1122-1132 (2006) · Zbl 1142.93408
[14] Gao, R., A novel track control for lorenz system with single state feedback, Chaos Solitons Fractals, 122, 236-244 (2019) · Zbl 1448.93128
[15] Jiang, G.-P.; Zheng, W. X., Chaos control for a class of chaotic systems using PI-type state observer approach, Chaos Solitons Fractals, 21, 93-99 (2004) · Zbl 1048.37028
[16] Jin, M.; Chang, P. H., Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems, Chaos Solitons Fractals, 41, 2672-2680 (2009) · Zbl 1198.93161
[17] Jin, L.; Zhang, Y.; Qiao, T.; Tan, M.; Zhang, Y., Tracking control of modified lorenz nonlinear system using ZG neural dynamics with additive input or mixed inputs, Neurocomputing, 196, 82-94 (2016)
[18] Kennedy, J., Encyclopedia of machine learning, Particle Swarm Optim., 760-766 (2010)
[19] Khedmati, Y.; Parvaz, R.; Behroo, Y., 2D hybrid chaos map for image security transform based on framelet and cellular automata, Inform. Sci., 512, 855-879 (2020)
[20] Koniakhin, S.; Bleu, O.; Malpuech, G.; Solnyshkov, D., 2D quantum turbulence in a polariton quantum fluid, Chaos Solitons Fractals, 132, Article 109574 pp. (2020)
[21] Lam, H.-K.; Ling, W.-K.; Iu, H. H.-C.; Ling, S. S., Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller, IEEE Trans. Circuits Syst. I. Regul. Pap., 55, 893-903 (2008)
[22] Leonov, G.; Kuznetsov, N.; Mokaev, T., Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity, Commun. Nonlinear Sci. Numer. Simul., 28, 166-174 (2015) · Zbl 1510.37063
[23] Li, S.; Li, Y.; Liu, B.; Murray, T., Model-free control of Lorenz chaos using an approximate optimal control strategy, Commun. Nonlinear Sci. Numer. Simul., 17, 4891-4900 (2012) · Zbl 1352.34090
[24] Liu, Y.; Park, J. H.; Guo, B.-Z.; Shu, Y., Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control, IEEE Trans. Fuzzy Syst., 26, 1040-1045 (2017)
[25] Munmuangsaen, B.; Srisuchinwong, B., A hidden chaotic attractor in the classical Lorenz system, Chaos Solitons Fractals, 107, 61-66 (2018) · Zbl 1380.34085
[26] Rafikov, M.; Balthazar, J. M., On an optimal control design for Rössler system, Phys. Lett. A, 333, 241-245 (2004) · Zbl 1123.49300
[27] Souza, C. E.; Chaves, D. P.; Pimentel, C., Digital communication systems based on three-dimensional chaotic attractors, IEEE Access, 7, 10523-10532 (2019)
[28] Sprott, J.; Munmuangsaen, B., Comment on A hidden chaotic attractor in the classical Lorenz system, Chaos Solitons Fractals, 113, 261-262 (2018) · Zbl 1404.34070
[29] Sun, Y.-J., A simple observer design of the generalized Lorenz chaotic systems, Phys. Lett. A, 374, 933-937 (2010) · Zbl 1235.34138
[30] Teh, J. S.; Alawida, M.; Sii, Y. C., Implementation and practical problems of chaos-based cryptography revisited, J. Inform. Security Appl., 50, Article 102421 pp. (2020)
[31] Tutueva, A. V.; Nepomuceno, E. G.; Karimov, A. I.; Andreev, V. S.; Butusov, D. N., Adaptive chaotic maps and their application to pseudo-random numbers generation, Chaos Solitons Fractals, 133, Article 109615 pp. (2020) · Zbl 1483.37112
[32] Ueta, T.; Chen, G., Bifurcation analysis of Chen’s equation, Int. J. Bifurcation Chaos, 10, 1917-1931 (2000) · Zbl 1090.37531
[33] Wang, Z.-P.; Wu, H.-N., On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach, IEEE Trans. Cybern., 45, 819-829 (2014)
[34] Xu, W.; Shen, H.; Hu, D.; Lei, A., Impulse tuning of Chua chaos, Internat. J. Engrg. Sci., 43, 275-280 (2005) · Zbl 1211.93100
[35] Yang, S.-K.; Chen, C.-L.; Yau, H.-T., Control of chaos in Lorenz system, Chaos Solitons Fractals, 13, 767-780 (2002) · Zbl 1031.34042
[36] Yau, H.-T.; Chen, C.-L., Chaos control of Lorenz systems using adaptive controller with input saturation, Chaos Solitons Fractals, 34, 1567-1574 (2007)
[37] Yu, W., Passive equivalence of chaos in Lorenz system, IEEE Trans. Circuits Syst. I, 46, 876-878 (1999)
[38] Zhang, Z.; Shao, H.; Wang, Z.; Shen, H., Reduced-order observer design for the synchronization of the generalized Lorenz chaotic systems, Appl. Math. Comput., 218, 7614-7621 (2012) · Zbl 1250.34045
[39] Zhong-Qiang, W.; Wen-Jing, J.; Li-Ru, Z.; Chang-Han, W., Maximum wind power tracking for PMSG chaos systems-ADHDP method, Appl. Soft Comput., 36, 204-209 (2015)
[40] Zhou, X.; Li, J.; Youjie, M., Chaos phenomena in dc-dc converter and chaos control, Procedia Eng., 29, 470-473 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.