×

Are there ALPs in the asymptotically safe landscape? (English) Zbl 1522.83063

Summary: We investigate axion-like particles (ALPs) in the context of asymptotically safe gravity-matter systems. The ALP-photon interaction, which facilitates experimental searches for ALPs, is a dimension-5-operator. Quantum fluctuations of gravity lower its scaling dimension, and the ALP-photon coupling can become asymptotically free or even asymptotically safe. However, quantum fluctuations of gravity need to be strong to overcome the canonical scaling and this strong-gravity regime is in tension with the weak-gravity bound in asymptotic safety. Thus, we tentatively conclude that fundamental ALPs can likely not be accommodated in asymptotically safe gravity-matter systems. In turn, an experimental discovery of an ALP would thus shed valuable light on the quantum nature of gravity.

MSC:

83C45 Quantization of the gravitational field
81T17 Renormalization group methods applied to problems in quantum field theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81V17 Gravitational interaction in quantum theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A., WISPy Cold Dark Matter, JCAP, 06, 013 (2012) · doi:10.1088/1475-7516/2012/06/013
[2] Ringwald, A., Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ., 1, 116 (2012) · doi:10.1016/j.dark.2012.10.008
[3] R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in Community Summer Study 2013: Snowmass on the Mississippi, (2013) [arXiv:1311.0029] [INSPIRE].
[4] A. Ringwald, Axions and Axion-Like Particles, in 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories, (2014), pp. 223-230 [arXiv:1407.0546] [INSPIRE].
[5] Irastorza, IG; Redondo, J., New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys., 102, 89 (2018) · doi:10.1016/j.ppnp.2018.05.003
[6] K. Choi, S.H. Im and C. Sub Shin, Recent Progress in the Physics of Axions and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci.71 (2021) 225 [arXiv:2012.05029] [INSPIRE].
[7] Irastorza, IG, An introduction to axions and their detection, SciPost Phys. Lect. Notes, 45, 1 (2022)
[8] Shaposhnikov, M.; Wetterich, C., Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B, 683, 196 (2010) · doi:10.1016/j.physletb.2009.12.022
[9] Harst, U.; Reuter, M., QED coupled to QEG, JHEP, 05, 119 (2011) · Zbl 1296.83026 · doi:10.1007/JHEP05(2011)119
[10] Eichhorn, A.; Held, A., Top mass from asymptotic safety, Phys. Lett. B, 777, 217 (2018) · Zbl 07045772 · doi:10.1016/j.physletb.2017.12.040
[11] Eichhorn, A.; Versteegen, F., Upper bound on the Abelian gauge coupling from asymptotic safety, JHEP, 01, 030 (2018) · Zbl 1384.83015 · doi:10.1007/JHEP01(2018)030
[12] A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett.121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].
[13] Bernal, N.; Heikinheimo, M.; Tenkanen, T.; Tuominen, K.; Vaskonen, V., The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A, 32, 1730023 (2017) · Zbl 06817675 · doi:10.1142/S0217751X1730023X
[14] Ferreira, EGM, Ultra-light dark matter, Astron. Astrophys. Rev., 29, 7 (2021) · doi:10.1007/s00159-021-00135-6
[15] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B120 (1983) 127 [INSPIRE].
[16] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B120 (1983) 133 [INSPIRE].
[17] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B120 (1983) 137 [INSPIRE].
[18] P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].
[19] Marsh, DJE, Axion Cosmology, Phys. Rept., 643, 1 (2016) · Zbl 06705154 · doi:10.1016/j.physrep.2016.06.005
[20] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
[21] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE].
[22] S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].
[23] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
[24] M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G46 (2019) 103003 [arXiv:1903.03026] [INSPIRE].
[25] Graham, PW; Irastorza, IG; Lamoreaux, SK; Lindner, A.; van Bibber, KA, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci., 65, 485 (2015) · doi:10.1146/annurev-nucl-102014-022120
[26] M. Carena et al., Strategic Search Plan for Axions and Axion-like-particles, CERN-ESU-012, FERMILAB-PUB-22-380-T [INSPIRE].
[27] G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D37 (1988) 1237 [INSPIRE].
[28] P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett.51 (1983) 1415 [Erratum ibid.52 (1984) 695] [INSPIRE].
[29] D.A. Dicus, E.W. Kolb, V.L. Teplitz and R.V. Wagoner, Astrophysical Bounds on the Masses of Axions and Higgs Particles, Phys. Rev. D18 (1978) 1829 [INSPIRE].
[30] G. Ruoso et al., Limits on light scalar and pseudoscalar particles from a photon regeneration experiment, Z. Phys. C56 (1992) 505 [INSPIRE].
[31] R. Cameron et al., Search for nearly massless, weakly coupled particles by optical techniques, Phys. Rev. D47 (1993) 3707 [INSPIRE].
[32] M. Fouche et al., Search for photon oscillations into massive particles, Phys. Rev. D78 (2008) 032013 [arXiv:0808.2800] [INSPIRE].
[33] OSQAR collaboration, First results from the OSQAR photon regeneration experiment: No light shining through a wall, Phys. Rev. D78 (2008) 092003 [arXiv:0712.3362] [INSPIRE].
[34] GammeV (T-969) collaboration, Search for axion-like particles using a variable baseline photon regeneration technique, Phys. Rev. Lett.100 (2008) 080402 [arXiv:0710.3783] [INSPIRE].
[35] Redondo, J.; Ringwald, A., Light shining through walls, Contemp. Phys., 52, 211 (2011) · doi:10.1080/00107514.2011.563516
[36] Ehret, K., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett. B, 689, 149 (2010) · doi:10.1016/j.physletb.2010.04.066
[37] R. Bähre et al., Any light particle search II — Technical Design Report, 2013 JINST8 T09001 [arXiv:1302.5647] [INSPIRE].
[38] M. Betz, F. Caspers, M. Gasior, M. Thumm and S.W. Rieger, First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS), Phys. Rev. D88 (2013) 075014 [arXiv:1310.8098] [INSPIRE].
[39] OSQAR collaboration, New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall, Phys. Rev. D92 (2015) 092002 [arXiv:1506.08082] [INSPIRE].
[40] SOLAX collaboration, Experimental search for solar axions via coherent Primakoff conversion in a germanium spectrometer, Phys. Rev. Lett.81 (1998) 5068 [astro-ph/9708008] [INSPIRE].
[41] S. Moriyama, M. Minowa, T. Namba, Y. Inoue, Y. Takasu and A. Yamamoto, Direct search for solar axions by using strong magnetic field and x-ray detectors, Phys. Lett. B434 (1998) 147 [hep-ex/9805026] [INSPIRE].
[42] COSME collaboration, Particle dark matter and solar axion searches with a small germanium detector at the Canfranc Underground Laboratory, Astropart. Phys.16 (2002) 325 [hep-ex/0101037] [INSPIRE].
[43] Y. Inoue et al., Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium, Phys. Lett. B536 (2002) 18 [astro-ph/0204388] [INSPIRE].
[44] Inoue, Y.; Akimoto, Y.; Ohta, R.; Mizumoto, T.; Yamamoto, A.; Minowa, M., Search for solar axions with mass around 1 eV using coherent conversion of axions into photons, Phys. Lett. B, 668, 93 (2008) · doi:10.1016/j.physletb.2008.08.020
[45] E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST9 T05002 [arXiv:1401.3233] [INSPIRE].
[46] CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys.13 (2017) 584 [arXiv:1705.02290] [INSPIRE].
[47] IAXO collaboration, Physics potential of the International Axion Observatory (IAXO), JCAP06 (2019) 047 [arXiv:1904.09155] [INSPIRE].
[48] ADMX collaboration, A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett.104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].
[49] MADMAX Working Group collaboration, Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett.118 (2017) 091801 [arXiv:1611.05865] [INSPIRE].
[50] McAllister, BT, The ORGAN Experiment: An axion haloscope above 15 GHz, Phys. Dark Univ., 18, 67 (2017) · doi:10.1016/j.dark.2017.09.010
[51] D. Alesini, D. Babusci, D. Di Gioacchino, C. Gatti, G. Lamanna and C. Ligi, The KLASH Proposal, arXiv:1707.06010 [INSPIRE].
[52] ADMX collaboration, A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett.120 (2018) 151301 [arXiv:1804.05750] [INSPIRE].
[53] J.L. Ouellet et al., First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter, Phys. Rev. Lett.122 (2019) 121802 [arXiv:1810.12257] [INSPIRE].
[54] HAYSTAC collaboration, Results from phase 1 of the HAYSTAC microwave cavity axion experiment, Phys. Rev. D97 (2018) 092001 [arXiv:1803.03690] [INSPIRE].
[55] Melcón, AA, Axion Searches with Microwave Filters: the RADES project, JCAP, 05, 040 (2018) · Zbl 07462720 · doi:10.1088/1475-7516/2018/05/040
[56] CDMS collaboration, Search for Axions with the CDMS Experiment, Phys. Rev. Lett.103 (2009) 141802 [arXiv:0902.4693] [INSPIRE].
[57] Armengaud, E., Axion searches with the EDELWEISS-II experiment, JCAP, 11, 067 (2013) · doi:10.1088/1475-7516/2013/11/067
[58] XENON100 collaboration, First Axion Results from the XENON100 Experiment, Phys. Rev. D90 (2014) 062009 [Erratum ibid.95 (2017) 029904] [arXiv:1404.1455] [INSPIRE].
[59] LUX collaboration, First Searches for Axions and Axionlike Particles with the LUX Experiment, Phys. Rev. Lett.118 (2017) 261301 [arXiv:1704.02297] [INSPIRE].
[60] G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys.741 (2008) 51 [hep-ph/0611350] [INSPIRE].
[61] A. Friedland, M. Giannotti and M. Wise, Constraining the Axion-Photon Coupling with Massive Stars, Phys. Rev. Lett.110 (2013) 061101 [arXiv:1210.1271] [INSPIRE].
[62] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett.113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].
[63] Payez, A.; Evoli, C.; Fischer, T.; Giannotti, M.; Mirizzi, A.; Ringwald, A., Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP, 02, 006 (2015) · doi:10.1088/1475-7516/2015/02/006
[64] A. Eichhorn, H. Gies and D. Roscher, Renormalization Flow of Axion Electrodynamics, Phys. Rev. D86 (2012) 125014 [arXiv:1208.0014] [INSPIRE].
[65] XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].
[66] Hawking, S.; Israel, W., General Relativity: an Einstein Centenary Survey (2010), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 0445.53040
[67] Eichhorn, A., An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci., 5, 47 (2019) · doi:10.3389/fspas.2018.00047
[68] C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE]. · Zbl 1354.81039
[69] Donoghue, JF, The effective field theory treatment of quantum gravity, AIP Conf. Proc., 1483, 73 (2012) · doi:10.1063/1.4756964
[70] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971 (1998) · doi:10.1103/PhysRevD.57.971
[71] Souma, W., Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys., 102, 181 (1999) · doi:10.1143/PTP.102.181
[72] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D65 (2002) 025013 [hep-th/0108040] [INSPIRE]. · Zbl 0993.83012
[73] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D65 (2002) 065016 [hep-th/0110054] [INSPIRE].
[74] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D66 (2002) 025026 [hep-th/0205062] [INSPIRE]. · Zbl 0993.83012
[75] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE]. · Zbl 1267.83040
[76] A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett.97 (2006) 221301 [hep-th/0607128] [INSPIRE]. · Zbl 1228.83091
[77] P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev. D77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].
[78] Codello, A.; Percacci, R.; Rahmede, C., Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys., 324, 414 (2009) · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[79] Benedetti, D.; Machado, PF; Saueressig, F., Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A, 24, 2233 (2009) · Zbl 1175.83030 · doi:10.1142/S0217732309031521
[80] A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity, Phys. Rev. D80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].
[81] Manrique, E.; Reuter, M.; Saueressig, F., Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys., 326, 463 (2011) · Zbl 1210.83018 · doi:10.1016/j.aop.2010.11.006
[82] A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].
[83] K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity, J. Phys. A43 (2010) 365403 [arXiv:1001.5032] [INSPIRE]. · Zbl 1197.83051
[84] Dietz, JA; Morris, TR, Asymptotic safety in the f(R) approximation, JHEP, 01, 108 (2013) · Zbl 1342.81339 · doi:10.1007/JHEP01(2013)108
[85] Christiansen, N.; Litim, DF; Pawlowski, JM; Rodigast, A., Fixed points and infrared completion of quantum gravity, Phys. Lett. B, 728, 114 (2014) · Zbl 1377.83030 · doi:10.1016/j.physletb.2013.11.025
[86] S. Rechenberger and F. Saueressig, The R^2phase-diagram of QEG and its spectral dimension, Phys. Rev. D86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].
[87] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].
[88] N. Ohta and R. Percacci, Higher Derivative Gravity and Asymptotic Safety in Diverse Dimensions, Class. Quant. Grav.31 (2014) 015024 [arXiv:1308.3398] [INSPIRE]. · Zbl 1287.83040
[89] A. Eichhorn, On unimodular quantum gravity, Class. Quant. Grav.30 (2013) 115016 [arXiv:1301.0879] [INSPIRE]. · Zbl 1271.83064
[90] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev. D93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].
[91] A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow equations in quantum gravity, Phys. Rev. D89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].
[92] N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global Flows in Quantum Gravity, Phys. Rev. D93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].
[93] Demmel, M.; Saueressig, F.; Zanusso, O., A proper fixed functional for four-dimensional Quantum Einstein Gravity, JHEP, 08, 113 (2015) · Zbl 1388.83105 · doi:10.1007/JHEP08(2015)113
[94] H. Gies, B. Knorr and S. Lippoldt, Generalized Parametrization Dependence in Quantum Gravity, Phys. Rev. D92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].
[95] N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local Quantum Gravity, Phys. Rev. D92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].
[96] Ohta, N.; Percacci, R.; Vacca, GP, Renormalization Group Equation and scaling solutions for f(R) gravity in exponential parametrization, Eur. Phys. J. C, 76, 46 (2016) · doi:10.1140/epjc/s10052-016-3895-1
[97] N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f(R) gravity and some of its exact solutions, Phys. Rev. D92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].
[98] K. Falls, Renormalization of Newton’s constant, Phys. Rev. D92 (2015) 124057 [arXiv:1501.05331] [INSPIRE].
[99] Eichhorn, A., The renormalization Group flow of unimodular f(R) gravity, JHEP, 04, 096 (2015) · Zbl 06877920 · doi:10.1007/JHEP04(2015)096
[100] H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is Asymptotically Safe, Phys. Rev. Lett.116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].
[101] Denz, T.; Pawlowski, JM; Reichert, M., Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J. C, 78, 336 (2018) · doi:10.1140/epjc/s10052-018-5806-0
[102] J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: Asymptotically safe and sound, Phys. Rev. D95 (2017) 086013 [arXiv:1609.04813] [INSPIRE]. · Zbl 1380.83088
[103] K. Falls and N. Ohta, Renormalization Group Equation for f(R) gravity on hyperbolic spaces, Phys. Rev. D94 (2016) 084005 [arXiv:1607.08460] [INSPIRE].
[104] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, On de Sitter solutions in asymptotically safe f(R) theories, Class. Quant. Grav.35 (2018) 135006 [arXiv:1607.04962] [INSPIRE]. · Zbl 1409.83145
[105] de Alwis, SP, Exact RG Flow Equations and Quantum Gravity, JHEP, 03, 118 (2018) · Zbl 1388.83150 · doi:10.1007/JHEP03(2018)118
[106] N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev. D97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].
[107] K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev. D97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].
[108] Houthoff, WB; Kurov, A.; Saueressig, F., Impact of topology in foliated Quantum Einstein Gravity, Eur. Phys. J. C, 77, 491 (2017) · doi:10.1140/epjc/s10052-017-5046-8
[109] K. Falls, Physical renormalization schemes and asymptotic safety in quantum gravity, Phys. Rev. D96 (2017) 126016 [arXiv:1702.03577] [INSPIRE].
[110] Becker, D.; Ripken, C.; Saueressig, F., On avoiding Ostrogradski instabilities within Asymptotic Safety, JHEP, 12, 121 (2017) · Zbl 1383.83025 · doi:10.1007/JHEP12(2017)121
[111] B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev. D96 (2017) 065020 [arXiv:1707.01397] [INSPIRE].
[112] B. Knorr, Infinite order quantum-gravitational correlations, Class. Quant. Grav.35 (2018) 115005 [arXiv:1710.07055] [INSPIRE]. · Zbl 1393.83016
[113] G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and field parametrization dependence in the f(R) truncation, Phys. Rev. D98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].
[114] Eichhorn, A.; Lippoldt, S.; Pawlowski, JM; Reichert, M.; Schiffer, M., How perturbative is quantum gravity?, Phys. Lett. B, 792, 310 (2019) · Zbl 07086196 · doi:10.1016/j.physletb.2019.01.071
[115] K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev. D99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].
[116] L. Bosma, B. Knorr and F. Saueressig, Resolving Spacetime Singularities within Asymptotic Safety, Phys. Rev. Lett.123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].
[117] B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox, Class. Quant. Grav.36 (2019) 234001 [arXiv:1907.02903] [INSPIRE]. · Zbl 1478.83093
[118] K. Falls, N. Ohta and R. Percacci, Towards the determination of the dimension of the critical surface in asymptotically safe gravity, Phys. Lett. B810 (2020) 135773 [arXiv:2004.04126] [INSPIRE]. · Zbl 1475.83112
[119] Y. Kluth and D.F. Litim, Fixed Points of Quantum Gravity and the Dimensionality of the UV Critical Surface, arXiv:2008.09181 [INSPIRE].
[120] Knorr, B., The derivative expansion in asymptotically safe quantum gravity: general setup and quartic order, SciPost Phys. Core, 4, 020 (2021) · doi:10.21468/SciPostPhysCore.4.3.020
[121] Bonanno, A.; Denz, T.; Pawlowski, JM; Reichert, M., Reconstructing the graviton, SciPost Phys., 12, 001 (2022) · doi:10.21468/SciPostPhys.12.1.001
[122] Baldazzi, A.; Falls, K., Essential Quantum Einstein Gravity, Universe, 7, 294 (2021) · doi:10.3390/universe7080294
[123] Sen, S.; Wetterich, C.; Yamada, M., Asymptotic freedom and safety in quantum gravity, JHEP, 03, 130 (2022) · Zbl 1522.83078 · doi:10.1007/JHEP03(2022)130
[124] Mitchell, A.; Morris, TR; Stulga, D., Provable properties of asymptotic safety in f(R) approximation, JHEP, 01, 041 (2022) · Zbl 1521.83014 · doi:10.1007/JHEP01(2022)041
[125] Knorr, B.; Ripken, C.; Saueressig, F., Form Factors in Quantum Gravity: Contrasting non-local, ghost-free gravity and Asymptotic Safety, Nuovo Cim. C, 45, 28 (2022)
[126] A. Baldazzi, K. Falls and R. Ferrero, Relational observables in asymptotically safe gravity, Annals Phys.440 (2022) 168822 [arXiv:2112.02118] [INSPIRE]. · Zbl 1494.83006
[127] J. Fehre, D.F. Litim, J.M. Pawlowski and M. Reichert, Lorentzian quantum gravity and the graviton spectral function, arXiv:2111.13232 [INSPIRE].
[128] Eichhorn, A., Status of the asymptotic safety paradigm for quantum gravity and matter, Found. Phys., 48, 1407 (2018) · Zbl 1411.83022 · doi:10.1007/s10701-018-0196-6
[129] R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, vol. 3 of 100 Years of General Relativity, World Scientific, Singapore (2017), [DOI] [INSPIRE].
[130] Reuter, M.; Saueressig, F., Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety (2019), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 1434.83006
[131] A.D. Pereira, Quantum spacetime and the renormalization group: Progress and visions, in Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics, (2019) [arXiv:1904.07042] [INSPIRE]. · Zbl 1445.83012
[132] M. Reichert, Lecture notes: Functional Renormalisation Group and Asymptotically Safe Quantum Gravity, PoS384 (2020) 005 [INSPIRE].
[133] J.M. Pawlowski and M. Reichert, Quantum Gravity: A Fluctuating Point of View, Front. in Phys.8 (2021) 551848 [arXiv:2007.10353] [INSPIRE].
[134] Bonanno, A., Critical reflections on asymptotically safe gravity, Front. in Phys., 8, 269 (2020) · doi:10.3389/fphy.2020.00269
[135] R. Loll, Quantum Gravity from Causal Dynamical Triangulations: A Review, Class. Quant. Grav.37 (2020) 013002 [arXiv:1905.08669] [INSPIRE]. · Zbl 1478.83095
[136] Eichhorn, A.; Koslowski, T.; Pereira, AD, Status of background-independent coarse-graining in tensor models for quantum gravity, Universe, 5, 53 (2019) · doi:10.3390/universe5020053
[137] Eichhorn, A.; Lumma, J.; Pereira, AD; Sikandar, A., Universal critical behavior in tensor models for four-dimensional quantum gravity, JHEP, 02, 110 (2020) · Zbl 1435.83050 · doi:10.1007/JHEP02(2020)110
[138] Benedetti, D.; Machado, PF; Saueressig, F., Four-derivative interactions in asymptotically safe gravity, AIP Conf. Proc., 1196, 44 (2009) · doi:10.1063/1.3284399
[139] K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher Derivative Gravity from the Universal Renormalization Group Machine, PoSEPS-HEP2011 (2011) 124 [arXiv:1111.1743] [INSPIRE].
[140] Pawlowski, JM, Aspects of the functional renormalisation group, Annals Phys., 322, 2831 (2007) · Zbl 1132.81041 · doi:10.1016/j.aop.2007.01.007
[141] H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys.852 (2012) 287 [hep-ph/0611146] [INSPIRE]. · Zbl 1257.81058
[142] Dupuis, N., The nonperturbative functional renormalization group and its applications, Phys. Rept., 910, 1 (2021) · Zbl 1476.81084 · doi:10.1016/j.physrep.2021.01.001
[143] Wilson, KG; Kogut, JB, The renormalization group and the ϵ-expansion, Phys. Rept., 12, 75 (1974) · doi:10.1016/0370-1573(74)90023-4
[144] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90 (1993) · doi:10.1016/0370-2693(93)90726-X
[145] T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A9 (1994) 2411 [hep-ph/9308265] [INSPIRE]. · Zbl 0985.81604
[146] A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity, Phys. Rev. D99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].
[147] A. Eichhorn and M. Pauly, Constraining power of asymptotic safety for scalar fields, Phys. Rev. D103 (2021) 026006 [arXiv:2009.13543] [INSPIRE].
[148] E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity, Phys. Rev. Lett.106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].
[149] T. Draper, B. Knorr, C. Ripken and F. Saueressig, Finite Quantum Gravity Amplitudes: No Strings Attached, Phys. Rev. Lett.125 (2020) 181301 [arXiv:2007.00733] [INSPIRE]. · Zbl 1456.83022
[150] A. Platania and C. Wetterich, Non-perturbative unitarity and fictitious ghosts in quantum gravity, Phys. Lett. B811 (2020) 135911 [arXiv:2009.06637] [INSPIRE]. · Zbl 1475.83037
[151] P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].
[152] J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev. D93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].
[153] P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev. D93 (2016) 044049 [Erratum ibid.93 (2016) 129904] [arXiv:1512.01589] [INSPIRE].
[154] Biemans, J.; Platania, A.; Saueressig, F., Renormalization group fixed points of foliated gravity-matter systems, JHEP, 05, 093 (2017) · Zbl 1380.83088 · doi:10.1007/JHEP05(2017)093
[155] Alkofer, N.; Saueressig, F., Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case, Annals Phys., 396, 173 (2018) · Zbl 1398.83030 · doi:10.1016/j.aop.2018.07.017
[156] C. Wetterich and M. Yamada, Variable Planck mass from the gauge invariant flow equation, Phys. Rev. D100 (2019) 066017 [arXiv:1906.01721] [INSPIRE].
[157] A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys.13 (2011) 125012 [arXiv:1104.5366] [INSPIRE].
[158] Donà, P.; Eichhorn, A.; Percacci, R., Consistency of matter models with asymptotically safe quantum gravity, Can. J. Phys., 93, 988 (2015) · doi:10.1139/cjp-2014-0574
[159] K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav.33 (2016) 125011 [arXiv:1510.03734] [INSPIRE]. · Zbl 1342.83282
[160] Wetterich, C.; Yamada, M., Gauge hierarchy problem in asymptotically safe gravity — the resurgence mechanism, Phys. Lett. B, 770, 268 (2017) · Zbl 06990113 · doi:10.1016/j.physletb.2017.04.049
[161] Eichhorn, A.; Lippoldt, S., Quantum gravity and Standard-Model-like fermions, Phys. Lett. B, 767, 142 (2017) · Zbl 06995001 · doi:10.1016/j.physletb.2017.01.064
[162] A. Eichhorn, S. Lippoldt and V. Skrinjar, Nonminimal hints for asymptotic safety, Phys. Rev. D97 (2018) 026002 [arXiv:1710.03005] [INSPIRE].
[163] A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for matter, Phys. Rev. D96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].
[164] N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev. D97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].
[165] Hamada, Y.; Yamada, M., Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system, JHEP, 08, 070 (2017) · Zbl 1381.83033 · doi:10.1007/JHEP08(2017)070
[166] J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev. D99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].
[167] Eichhorn, A.; Labus, P.; Pawlowski, JM; Reichert, M., Effective universality in quantum gravity, SciPost Phys., 5, 031 (2018) · doi:10.21468/SciPostPhys.5.4.031
[168] De Brito, GP; Hamada, Y.; Pereira, AD; Yamada, M., On the impact of Majorana masses in gravity-matter systems, JHEP, 08, 142 (2019) · Zbl 1456.83019 · doi:10.1007/JHEP08(2019)142
[169] De Brito, GP; Eichhorn, A.; Pereira, AD, A link that matters: Towards phenomenological tests of unimodular asymptotic safety, JHEP, 09, 100 (2019) · Zbl 1423.83024 · doi:10.1007/JHEP09(2019)100
[170] B. Bürger, J.M. Pawlowski, M. Reichert and B.-J. Schaefer, Curvature dependence of quantum gravity with scalars, arXiv:1912.01624 [INSPIRE].
[171] J.H. Kwapisz, Asymptotic safety, the Higgs boson mass, and beyond the standard model physics, Phys. Rev. D100 (2019) 115001 [arXiv:1907.12521] [INSPIRE].
[172] Daas, J.; Oosters, W.; Saueressig, F.; Wang, J., Asymptotically Safe Gravity-Fermion Systems on Curved Backgrounds, Universe, 7, 306 (2021) · doi:10.3390/universe7080306
[173] M. Schiffer, Probing Quantum Gravity: Theoretical and phenomenological consistency tests of asymptotically safe quantum gravity, Ph.D. Thesis, Heidelberg University, Germany (2021) [DOI].
[174] R.G. Jha, J. Laiho and J. Unmuth-Yockey, Lattice quantum gravity with scalar fields, PoSLATTICE2018 (2018) 043 [arXiv:1810.09946] [INSPIRE].
[175] S. Catterall, J. Laiho and J. Unmuth-Yockey, Kähler-Dirac fermions on Euclidean dynamical triangulations, Phys. Rev. D98 (2018) 114503 [arXiv:1810.10626] [INSPIRE].
[176] M. Dai, J. Laiho, M. Schiffer and J. Unmuth-Yockey, Newtonian binding from lattice quantum gravity, Phys. Rev. D103 (2021) 114511 [arXiv:2102.04492] [INSPIRE].
[177] J. Ambjørn, Z. Drogosz, J. Gizbert-Studnicki, A. Görlich, J. Jurkiewicz and D. Németh, Matter-Driven Change of Spacetime Topology, Phys. Rev. Lett.127 (2021) 161301 [arXiv:2103.00198] [INSPIRE]. · Zbl 1415.83004
[178] J. Ambjørn, Z. Drogosz, J. Gizbert-Studnicki, A. Görlich, J. Jurkiewicz and D.a. Németh, Scalar fields in causal dynamical triangulations, Class. Quant. Grav.38 (2021) 195030 [arXiv:2105.10086] [INSPIRE]. · Zbl 1479.83066
[179] A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev. D94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].
[180] Christiansen, N.; Eichhorn, A., An asymptotically safe solution to the U(1) triviality problem, Phys. Lett. B, 770, 154 (2017) · Zbl 1403.81063 · doi:10.1016/j.physletb.2017.04.047
[181] Eichhorn, A.; Schiffer, M., d = 4 as the critical dimensionality of asymptotically safe interactions, Phys. Lett. B, 793, 383 (2019) · Zbl 07102827 · doi:10.1016/j.physletb.2019.05.005
[182] G.P. de Brito, A. Eichhorn and R.R.L.d. Santos, The weak-gravity bound and the need for spin in asymptotically safe matter-gravity models, JHEP11 (2021) 110 [arXiv:2107.03839] [INSPIRE]. · Zbl 1521.83041
[183] A. Eichhorn, J.H. Kwapisz and M. Schiffer, Weak-gravity bound in asymptotically safe gravity-gauge systems, Phys. Rev. D105 (2022) 106022 [arXiv:2112.09772] [INSPIRE].
[184] A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev. D97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].
[185] Wetterich, C., Effective scalar potential in asymptotically safe quantum gravity, Universe, 7, 45 (2021) · doi:10.3390/universe7020045
[186] A. Eichhorn and M. Pauly, Safety in darkness: Higgs portal to simple Yukawa systems, Phys. Lett. B819 (2021) 136455 [arXiv:2005.03661] [INSPIRE].
[187] F. Grabowski, J.H. Kwapisz and K.A. Meissner, Asymptotic safety and Conformal Standard Model, Phys. Rev. D99 (2019) 115029 [arXiv:1810.08461] [INSPIRE].
[188] Eichhorn, A.; Held, A.; Wetterich, C., Predictive power of grand unification from quantum gravity, JHEP, 08, 111 (2020) · Zbl 1460.83029 · doi:10.1007/JHEP08(2020)111
[189] M. Reichert and J. Smirnov, Dark Matter meets Quantum Gravity, Phys. Rev. D101 (2020) 063015 [arXiv:1911.00012] [INSPIRE].
[190] R. Alkofer, A. Eichhorn, A. Held, C.M. Nieto, R. Percacci and M. Schröfl, Quark masses and mixings in minimally parameterized UV completions of the Standard Model, Annals Phys.421 (2020) 168282 [arXiv:2003.08401] [INSPIRE]. · Zbl 1448.81462
[191] K. Kowalska and E.M. Sessolo, Minimal models for g-2 and dark matter confront asymptotic safety, Phys. Rev. D103 (2021) 115032 [arXiv:2012.15200] [INSPIRE].
[192] Kowalska, K.; Sessolo, EM; Yamamoto, Y., Flavor anomalies from asymptotically safe gravity, Eur. Phys. J. C, 81, 272 (2021) · doi:10.1140/epjc/s10052-021-09072-1
[193] Domènech, G.; Goodsell, M.; Wetterich, C., Neutrino masses, vacuum stability and quantum gravity prediction for the mass of the top quark, JHEP, 01, 180 (2021) · Zbl 07343173 · doi:10.1007/JHEP01(2021)180
[194] G.P. de Brito, A. Eichhorn and M. Schiffer, Light charged fermions in quantum gravity, Phys. Lett. B815 (2021) 136128 [arXiv:2010.00605] [INSPIRE]. · Zbl 1509.83012
[195] Hamada, Y.; Tsumura, K.; Yamada, M., Scalegenesis and fermionic dark matters in the flatland scenario, Eur. Phys. J. C, 80, 368 (2020) · doi:10.1140/epjc/s10052-020-7929-3
[196] Eichhorn, A.; Pauly, M.; Ray, S., Towards a Higgs mass determination in asymptotically safe gravity with a dark portal, JHEP, 10, 100 (2021) · Zbl 07447936 · doi:10.1007/JHEP10(2021)100
[197] A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev. D86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].
[198] A. Eichhorn, Faddeev-Popov ghosts in quantum gravity beyond perturbation theory, Phys. Rev. D87 (2013) 124016 [arXiv:1301.0632] [INSPIRE].
[199] Laporte, C.; Pereira, AD; Saueressig, F.; Wang, J., Scalar-tensor theories within Asymptotic Safety, JHEP, 12, 001 (2021) · Zbl 1521.81477 · doi:10.1007/JHEP12(2021)001
[200] D.F. Litim, Optimized renormalization group flows, Phys. Rev. D64 (2001) 105007 [hep-th/0103195] [INSPIRE].
[201] D. Brizuela, J.M. Martin-Garcia and G.A. Mena Marugan, xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav.41 (2009) 2415 [arXiv:0807.0824] [INSPIRE]. · Zbl 1176.83004
[202] Martin-Garcia, JM; Portugal, R.; Manssur, LRU, The Invar Tensor Package, Comput. Phys. Commun., 177, 640 (2007) · Zbl 1196.15006 · doi:10.1016/j.cpc.2007.05.015
[203] Martin-Garcia, JM; Yllanes, D.; Portugal, R., The invar tensor package: Differential invariants of Riemann, Comput. Phys. Commun., 179, 586 (2008) · Zbl 1197.15001 · doi:10.1016/j.cpc.2008.04.018
[204] Cyrol, AK; Mitter, M.; Strodthoff, N., FormTracer — A Mathematica Tracing Package Using FORM, Comput. Phys. Commun., 219, 346 (2017) · Zbl 1411.22001 · doi:10.1016/j.cpc.2017.05.024
[205] M.Q. Huber, A.K. Cyrol and J.M. Pawlowski, DoFun 3.0: Functional equations in Mathematica, Comput. Phys. Commun.248 (2020) 107058 [arXiv:1908.02760] [INSPIRE]. · Zbl 07678484
[206] H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun.218 (2017) 66 [arXiv:1612.00009] [INSPIRE]. · Zbl 1411.81016
[207] G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav.27 (2010) 075001 [arXiv:0911.0386] [INSPIRE]. · Zbl 1189.83078
[208] Percacci, R.; Vacca, GP, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C, 75, 188 (2015) · doi:10.1140/epjc/s10052-015-3410-0
[209] Labus, P.; Percacci, R.; Vacca, GP, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett. B, 753, 274 (2016) · Zbl 1367.83074 · doi:10.1016/j.physletb.2015.12.022
[210] Daum, J-E; Harst, U.; Reuter, M., Running Gauge Coupling in Asymptotically Safe Quantum Gravity, JHEP, 01, 084 (2010) · Zbl 1269.83029 · doi:10.1007/JHEP01(2010)084
[211] Folkerts, S.; Litim, DF; Pawlowski, JM, Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B, 709, 234 (2012) · doi:10.1016/j.physletb.2012.02.002
[212] Bonilla, J.; Brivio, I.; Gavela, MB; Sanz, V., One-loop corrections to ALP couplings, JHEP, 11, 168 (2021) · Zbl 07598830 · doi:10.1007/JHEP11(2021)168
[213] CMS collaboration, Measurement of the top quark Yukawa coupling from \(t\overline{t}\) kinematic distributions in the lepton+jets final state in proton-proton collisions at \(\sqrt{s} = 13\) TeV, Phys. Rev. D100 (2019) 072007 [arXiv:1907.01590] [INSPIRE].
[214] ATLAS collaboration, Recent \(t\overline{t}H\) measurements with ATLAS, PoSLHCP2020 (2021) 179 [INSPIRE].
[215] C. Cai, H.H. Zhang, M.T. Frandsen, M. Rosenlyst and G. Cacciapaglia, XENON1T solar axion and the Higgs boson emerging from the dark, Phys. Rev. D102 (2020) 075018 [arXiv:2006.16267] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.