×

Tensor-product-Thomas elliptic solver for liquid-metal magnetohydrodynamics. (English) Zbl 07640543

Summary: A new approach to numerical simulation of magnetohydrodynamic flows of liquid metals is presented. It combines the conservative finite-difference discretization with a tensor-product-Thomas solution of the elliptic problems for pressure, electric potential, velocity, and temperature. The method is realizable on an arbitrarily clustered structured grid. The main novelty of the approach is the efficient solution of the practically important and computationally challenging elliptic problems for electric potential in flow domains with thin electrically conducting walls. The method is verified via solution of benchmark problems for streamwise-uniform and nonuniform, steady and unsteady magnetohydrodynamic flows in ducts, and for thermal convection in boxes of various aspect ratios. Computational efficiency of the method in comparison to the existing ones is demonstrated.

MSC:

76Wxx Magnetohydrodynamics and electrohydrodynamics
76Mxx Basic methods in fluid mechanics
76Fxx Turbulence

Software:

GEMMW; FISHPAK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thomas, B. G.; Zhang, L., Mathematical modeling of fluid flow in continuous casting: a review, ISIJ Int., 41, 10, 1181-1193 (2001)
[2] Ozoe, H., Magnetic Convection (2005), Imperial College Press: Imperial College Press London
[3] Abdou, M.; Morley, N. B.; Smolentsev, S.; Ying, A.; Malang, S.; Rowcliffe, A.; Ulrickson, M., Blanket/first wall challenges and required R&D on the pathway to DEMO, Fusion Eng. Des., 100, 2-43 (2015)
[4] Davidson, P. A., Introduction to Magnetohydrodynamics (2016), Cambridge University Press · Zbl 1376.76001
[5] Zikanov, O.; Krasnov, D.; Boeck, T.; Thess, A.; Rossi, M., Laminar-turbulent transition in magnetohydrodynamic duct, pipe, and channel flows, Appl. Mech. Rev., 66, 3, Article 030802 pp. (2014)
[6] Zikanov, O.; Belyaev, I.; Listratov, Y.; Frick, P.; Razuvanov, N.; Sviridov, V., Mixed convection in pipe and duct flows with strong magnetic fields, Appl. Mech. Rev., 73, 1, Article 010801 pp. (2021)
[7] Smolentsev, S., Physical background, computations and practical issues of the magnetohydrodynamic pressure drop in a fusion liquid metal blanket, Fluids, 6, 3, 110 (2021)
[8] Mistrangelo, C.; Bühler, L.; Alberghi, C.; Bassini, S.; Candido, L.; Courtessole, C.; Tassone, A.; Urgorri, F. R.; Zikanov, O., MHD R&D activities for liquid metal blankets, Energies, 14, 20, 6640 (2021)
[9] Smolentsev, S.; Badia, S.; Bhattacharyay, R.; Bühler, L.; Chen, L.; Huang, Q.; Jin, H.-G.; Krasnov, D.; Lee, D.-W.; De, E. M.; Valls, Les, An approach to verification and validation of MHD codes for fusion applications, Fusion Eng. Des., 100, 65-72 (2015)
[10] Smolentsev, S.; Rhodes, T.; Yan, Y.; Tassone, A.; Mistrangelo, C.; Bühler, L.; Urgorri, F., Code-to-code comparison for a PbLi mixed-convection MHD flow, Fusion Sci. Technol., 1-17 (2020)
[11] Ni, M.-J.; Munipalli, R.; Huang, P.; Morley, N. B.; Abdou, M. A., A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system, J. Comput. Phys., 227, 174-204 (2007) · Zbl 1280.76045
[12] Ni, M.-J.; Munipalli, R.; Huang, P.; Morley, N. B.; Abdou, M. A., A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh, J. Comput. Phys., 227, 1, 205-228 (2007) · Zbl 1280.76044
[13] Ni, M.-J.; Li, J.-F., A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part III: on a staggered mesh, J. Comput. Phys., 231, 2, 281-298 (2012) · Zbl 1316.76079
[14] Krasnov, D.; Zikanov, O.; Boeck, T., Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number, Comput. Fluids, 50, 46-59 (2011) · Zbl 1271.76211
[15] Krasnov, D. S.; Zikanov, O.; Boeck, T., Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers, J. Fluid Mech., 704, 421-446 (2012) · Zbl 1246.76153
[16] Zikanov, O.; Listratov, Y.; Sviridov, V. G., Natural convection in horizontal pipe flow with strong transverse magnetic field, J. Fluid Mech., 720, 486-516 (2013) · Zbl 1284.76346
[17] Zhao, Y.; Zikanov, O., Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers, J. Fluid Mech., 692, 288-316 (2012) · Zbl 1250.76092
[18] Gelfgat, A. Y.; Zikanov, O., Computational modeling of magnetoconvection: effects of discretization method, grid refinement and grid stretching, Comput. Fluids, 175, 66-82 (2018) · Zbl 1410.76227
[19] Zikanov, O.; Krasnov, D.; Boeck, T.; Sukoriansky, S., Decay of turbulence in a liquid metal duct flow with transverse magnetic field, J. Fluid Mech., 867, 661-690 (2019) · Zbl 1430.76496
[20] Akhmedagaev, R.; Zikanov, O.; Krasnov, D.; Schumacher, J., Turbulent convection in strong vertical magnetic field, J. Fluid Mech., 895, R4 (2020) · Zbl 1460.76918
[21] Chen, L.; Smolentsev, S.; Ni, M.-J., Toward full simulations for a liquid metal blanket: MHD flow computations for a PbLi blanket prototype at \(\operatorname{Ha} \sim 10^4\), Nucl. Fusion, 60, 7, Article 076003 pp. (2020)
[22] Chen, L.; Smolentsev, S.; Ni, M.-J., Toward full simulations for a liquid metal blanket: part 2. Computations of MHD flows with volumetric heating for a PbLi blanket prototype at \(H a \sim 10^4\) and \(G r \sim 10^{12}\), Nucl. Fusion, 62, 2, Article 026042 pp. (2022)
[23] Müller, U.; Bühler, L., Magnetohydrodynamics in Channels and Containers (2001), Springer: Springer Berlin
[24] Bandaru, V.; Boeck, T.; Krasnov, D.; Schumacher, J., A hybrid finite difference-boundary element procedure for the simulation of turbulent MHD duct flow at finite magnetic Reynolds number, J. Comput. Phys., 304, 320-339 (2016) · Zbl 1349.76427
[25] Smolentsev, S.; Cuevas, S.; Beltrán, A., Induced electric current-based formulation in computations of low magnetic Reynolds number magnetohydrodynamic flows, J. Comput. Phys., 229, 5, 1558-1572 (2010) · Zbl 1329.76397
[26] Liu, Z.-H.; Chen, L.; Ni, M.-J.; Zhang, N.-M., Effects of magnetohydrodynamic mixed convection on fluid flow and structural stresses in the DCLL blanket, Int. J. Heat Mass Transf., 135, 847-859 (2019)
[27] Liu, W.; Krasnov, D.; Schumacher, J., Wall modes in magnetoconvection at high Hartmann numbers, J. Fluid Mech., 849, R2 (2018) · Zbl 1415.76315
[28] Rhodes, T. J.; Pulugundla, G.; Smolentsev, S.; Abdou, M., 3D modelling of MHD mixed convection flow in a vertical duct with transverse magnetic field and volumetric or surface heating, Fusion Eng. Des., 160, Article 111834 pp. (2020)
[29] Grannan, A.; Cheng, J.; Aggarwal, A.; Hawkins, E.; Xu, Y.; Horn, S.; Sánchez-Álvarez, J.; Aurnou, J., Experimental pub crawl from Rayleigh-Bénard to magnetostrophic convection, J. Fluid Mech., 939, R1 (2022)
[30] Schumacher, J., The various facets of liquid metal convection, J. Fluid Mech., 946, F1 (2022) · Zbl 1500.76077
[31] Walker, J. S., Magnetohydrodynamic flows in rectangular ducts with thin conducting walls. Part I: constant area and variable area ducts with strong uniform magnetic fields, J. Méc., 20, 79-112 (1981) · Zbl 0458.76096
[32] Sterl, A., Numerical simulation of liquid-metal MHD flows in rectangular ducts, J. Fluid Mech., 216, 161-191 (1990) · Zbl 0698.76123
[33] Bühler, L., Laminar buoyant magnetohydrodynamic flow in vertical rectangular ducts, Phys. Fluids, 10, 1, 223-236 (1998)
[34] Leboucher, L., Monotone scheme and boundary conditions for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number, J. Comput. Phys., 150, 1, 181-198 (1999) · Zbl 0935.76050
[35] Mück, B.; Günther, C.; Müller, U.; Bühler, L., Three-dimensional MHD flows in rectangular ducts with internal obstacles, J. Fluid Mech., 418, 265-295 (2000) · Zbl 0991.76098
[36] Di Piazza, I.; Ciofalo, M., MHD free convection in a liquid-metal filled cubic enclosure. I. Differential heating, Int. J. Heat Mass Transf., 45, 7, 1477-1492 (2002) · Zbl 1057.76069
[37] Kinet, M.; Knaepen, B.; Molokov, S., Instabilities and transition in magnetohydrodynamic flows in ducts with electrically conducting walls, Phys. Rev. Lett., 103, Article 154501 pp. (2009)
[38] Zikanov, O., Essential Computational Fluid Dynamics (2019), Wiley: Wiley Hoboken, NJ
[39] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[40] Ferziger, J. H.; Perić, M., Computational Methods for Fluid Dynamics (2002), Springer · Zbl 0998.76001
[41] Vitoshkin, H.; Gelfgat, A. Y., On direct and semi-direct inverse of Stokes, Helmholtz and Laplacian operators in view of time-stepper-based Newton and Arnoldi solvers in incompressible CFD, Commun. Comput. Phys., 14, 4, 1103-1119 (2013) · Zbl 1373.76039
[42] Lynch, R. E.; Rice, J. R.; Thomas, D. H., Direct solution of partial difference equations by tensor product methods, Numer. Math., 6, 1, 185-199 (1964) · Zbl 0126.12703
[43] Peyret, R., Spectral Methods for Incompressible Viscous Flow (2002), Springer · Zbl 1005.76001
[44] Gelfgat, A. Y., Time-dependent modeling of oscillatory instability of three-dimensional natural convection of air in a laterally heated cubic box, Theor. Comput. Fluid Dyn., 31, 4, 447-469 (2017)
[45] Adams, J. C.; Swarztrauber, P.; Sweet, R., Efficient Fortran subprograms for the solution of separable elliptic partial differential equations (1999)
[46] Leibniz Supercomputing Centre, SuperMUC-NG documentation
[47] Williams, V. V., Multiplying matrices faster than Coppersmith-Winograd, (Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC-12 (2012)), 887-898 · Zbl 1286.65056
[48] Hartnett, K., Matrix Multiplication Inches Closer to Mythic Goal (2021), Quanta Magazine
[49] Intel Math Kernel Libraryl, Reference Manual (2009), Intel Corporation: Intel Corporation Santa Clara, USA, iSBN 630813-054US
[50] Douglas, C. C.; Heroux, M.; Slishman, G.; Smith, R. M., GEMMW: a portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix multiply algorithm, J. Comput. Phys., 110, 1, 1-10 (1994) · Zbl 0793.65031
[51] Ovsyannikov, M., Numerical studies of turbulent Rayleigh-Bénard convection in closed cells: Boundary layer dynamics and large scale patterns (2018), Technische Universität Ilmenau, Ph.D. thesis
[52] Hunt, J., Magnetohydrodynamic flow in rectangular ducts, J. Fluid Mech., 21, 4, 577-590 (1965) · Zbl 0125.18401
[53] Moreau, R., Magnetohydrodynamics (1990), Kluwer Academic Publishers · Zbl 0714.76003
[54] Molokov, S., Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field, Eur. J. Mech. B, Fluids, 12, 6, 769-787 (1993) · Zbl 0810.76097
[55] Krasnov, D.; Boeck, T.; Braiden, L.; Molokov, S.; Bühler, L., Numerical Simulations of MHD Flow Transition in Ducts with Conducting Hartmann Walls, KIT Scientific Reports, vol. 7713 (2016), KIT Scientific Publishing: KIT Scientific Publishing Karlsruhe
[56] Arlt, T., Analyse des Stabilitätsverhaltens magnetohydrodynamischer Kanalströmungen (2018), Karlsruher Institut für Technologie (KIT), Ph.D. thesis
[57] Mistrangelo, C.; Bühler, L., Development of a numerical tool to simulate magnetohydrodynamic interactions of liquid metals with strong applied magnetic fields, Fusion Sci. Technol., 60, 2, 798-803 (2011)
[58] Braiden, L.; Krasnov, D.; Molokov, S.; Boeck, T.; Bühler, L., Transition to turbulence in Hunt’s flow in a moderate magnetic field, Europhys. Lett., 115, 4, Article 084501 pp. (2016)
[59] Authié, G., Convection naturelle sous champ magnétique en cavité verticale élancée-application aux couvertures des réacteurs de fusion (2002), Institut National Polytechnique de Grenoble, Ph.D. thesis
[60] Authié, G.; Tagawa, T.; Moreau, R., Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. Finite enclosures, Eur. J. Mech. B, Fluids, 22, 3, 203-220 (2003) · Zbl 1052.76586
[61] Foroozani, N.; Krasnov, D.; Schumacher, J., Turbulent convection for different thermal boundary conditions at the plates, J. Fluid Mech., 907, A27 (2021) · Zbl 1461.76419
[62] Zwirner, L.; Tilgner, A.; Shishkina, O., Elliptical instability and multiple-roll flow modes of the large-scale circulation in confined turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 125, Article 054502 pp. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.