×

An integrated approach for lean production using simulation and data envelopment analysis. (English) Zbl 1512.91072

Summary: According to the extant literature, improving the leanness of a production system boosts a company’s productivity and competitiveness. However, such an endeavor usually involves managing multiple, potentially conflicting objectives. This study proposes a framework that analyzes lean production methods using simulation and data envelopment analysis (DEA) to accommodate the underlying multi-objective decision-making problem. The proposed framework can help identify the most efficient solution alternative by (i) considering the most common lean production methods for assembly line balancing, such as single minute exchange of dies (SMED) and multi-machine set-up reduction (MMSUR), (ii) creating and simulating various alternative assembly line configuration options via discrete-event simulation modeling, and (iii) formulating and applying DEA to identify the best alternative assembly system configuration for the multi-objective decision making. In this study, we demonstrate the viability and superiority of the proposed framework with an application case on an automotive spare parts production system. The results show that the suggested framework substantially improves the existing system by increasing efficiency while concurrently decreasing work-in-process (WIP).

MSC:

91B38 Production theory, theory of the firm
90B30 Production models
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, A.; Colak, S.; Eryarsoy, E., Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach, European Journal of Operational Research, 169, 3, 801-815 (2006) · Zbl 1079.90044 · doi:10.1016/j.ejor.2004.06.039
[2] Ahlstrom, P., Lean service operations: Translating lean production principles to service operations, International Journal of Services Technology and Management, 5, 5-6, 545-564 (2004) · doi:10.1504/IJSTM.2004.006284
[3] Aldamak, A.; Zolfaghari, S., Review of efficiency ranking methods in data envelopment analysis, Measurement, 106, 161-172 (2017) · doi:10.1016/j.measurement.2017.04.028
[4] Andersen, P.; Petersen, NC, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39, 10, 1261-1264 (1993) · Zbl 0800.90096 · doi:10.1287/mnsc.39.10.1261
[5] Azadeh, A.; Yazdanparast, R.; Zadeh, SA; Zadeh, AE, Performance optimization of integrated resilience engineering and lean production principles, Expert Systems with Applications, 84, 155-170 (2017) · doi:10.1016/j.eswa.2017.05.012
[6] Baril, C.; Gascon, V.; Miller, J.; Côté, N., Use of a Discrete-event simulation in a Kaizen event: A case study in healthcare, European Journal of Operational Research, 249, 1, 327-339 (2016) · Zbl 1346.90295 · doi:10.1016/j.ejor.2015.08.036
[7] Barnabè, F.; Giorgino, MC, Practicing lean strategy: Hoshin Kanri and X-matrix in a healthcare-centered simulation, The TQM Journal, 29, 4, 590-609 (2017) · doi:10.1108/TQM-07-2016-0057
[8] Becker, C.; Scholl, A., A survey on problems and methods in generalized assembly line balancing, European Journal of Operational Research, 168, 3, 694-715 (2006) · Zbl 1083.90013 · doi:10.1016/j.ejor.2004.07.023
[9] Biswas, P.; Sarker, BR, Optimal batch quantity models for a lean production system with in-cycle rework and scrap, International Journal of Production Research, 46, 23, 6585-6610 (2008) · doi:10.1080/00207540802230330
[10] Boysen, N.; Fliedner, M.; Scholl, A., Assembly line balancing: Which model to use when?, International Journal of Production Economics, 111, 2, 509-528 (2008) · doi:10.1016/j.ijpe.2007.02.026
[11] Charnes, A.; Cooper, WW; Rhodes, E., Measuring the efficiency of decision making units, European Journal of Operational Research, 2, 6, 429-444 (1978) · Zbl 0416.90080 · doi:10.1016/0377-2217(78)90138-8
[12] Chauhan, G.; Singh, TP, Lean manufacturing through management of labor and machine flexibility: A comprehensive review, Global Journal of Flexible Systems Management, 12, 1, 59-80 (2011) · doi:10.1007/BF03396599
[13] De Matta, R.; Hsu, VN; Feng, CXJ, Short-term capacity adjustment with offline production for a flexible manufacturing system under abnormal disturbances, Annals of Operations Research, 107, 1, 83-100 (2001) · Zbl 1019.90040 · doi:10.1023/A:1014942830746
[14] Demirbag, M.; Tatoglu, E.; Glaister, KW, Equity-based entry modes of emerging country multinationals: Lessons from Turkey, Journal of World Business, 44, 4, 445-462 (2009) · doi:10.1016/j.jwb.2008.11.009
[15] Dhafr, N.; Ahmad, M.; Burgess, B.; Canagassababady, S., Improvement of quality performance in manufacturing organizations by minimization of production defects, Robotics and Computer-Integrated Manufacturing, 22, 5-6, 536-542 (2006) · doi:10.1016/j.rcim.2005.11.009
[16] Diaz-Elsayed, N.; Jondral, A.; Greinacher, S.; Dornfeld, D.; Lanza, G., Assessment of lean and green strategies by simulation of manufacturing systems in discrete production environments, CIRP Annals, 62, 1, 475-478 (2013) · doi:10.1016/j.cirp.2013.03.066
[17] Dillon, AP; Shingo, S., A revolution in manufacturing: The SMED system (1985), CRC Press
[18] Doğan, NÖ; Unutulmaz, O., Lean production in healthcare: A simulation-based value stream mapping in the physical therapy and rehabilitation Department of a Public Hospital, Total Quality Management & Business Excellence, 27, 1-2, 64-80 (2016) · doi:10.1080/14783363.2014.945312
[19] Esmaeilian, B.; Behdad, S.; Wang, B., The evolution and future of manufacturing: A review, Journal of Manufacturing Systems, 39, 79-100 (2016) · doi:10.1016/j.jmsy.2016.03.001
[20] Gijo, EV; Antony, J., Reducing patient waiting time in outpatient department using lean six sigma methodology, Quality and Reliability Engineering International, 30, 8, 1481-1491 (2014) · doi:10.1002/qre.1552
[21] Greinacher, S.; Moser, E.; Freier, J.; Müller, J.; Lanza, G., Simulation-based methodology for the application of lean and green strategies depending on external change driver influence, Procedia CIRP, 48, 242-247 (2016) · doi:10.1016/j.procir.2016.03.240
[22] Gurumurthy, A.; Kodali, R., A multi-criteria decision-making model for the justification of lean manufacturing systems, International Journal of Management Science and Engineering Management, 3, 2, 100-118 (2008) · doi:10.1080/17509653.2008.10671039
[23] Gustavsson, SO, Flexibility and productivity in complex production processes, International Journal of Production Research, 22, 5, 801-808 (1984) · doi:10.1080/00207548408942500
[24] He, J.; Chu, F.; Zheng, F.; Liu, M., A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times, Annals of Operations Research (2020) · Zbl 1467.90064 · doi:10.1007/s10479-020-03558-z
[25] Helgeson, WB; Birnie, DP, Assembly line balancing using the ranked positional weight technique, Journal of Industrial Engineering, 12, 6, 394-398 (1961)
[26] Hines, P., & Rich, N. (1997). The seven value stream mapping tools. International Journal of Operations & Production Management.
[27] Hopp, W.; Spearman, M., Factory physics (2000), McGraw-Hill/Irwin
[28] Jordon, K.; Dossou, PE; Junior, JC, Using lean manufacturing and machine learning for improving medicines procurement and dispatching in a hospital, Procedia Manufacturing, 38, 1034-1041 (2019) · doi:10.1016/j.promfg.2020.01.189
[29] Kilic, HS; Durmusoglu, MB, A mathematical model and a heuristic approach for periodic material delivery in lean production environment, The International Journal of Advanced Manufacturing Technology, 69, 5, 977-992 (2013) · doi:10.1007/s00170-013-5082-y
[30] Kull, TJ; Yan, T.; Liu, Z.; Wacker, JG, The moderation of lean manufacturing effectiveness by dimensions of national culture: Testing practice-culture congruence hypotheses, International Journal of Production Economics, 153, 1-12 (2014) · doi:10.1016/j.ijpe.2014.03.015
[31] Li, Y.; Diabat, A.; Lu, CC, Leagile supplier selection in Chinese textile industries: A DEMATEL approach, Annals of Operations Research, 287, 1, 303-322 (2020) · doi:10.1007/s10479-019-03453-2
[32] Mao, Z.; Huang, D.; Fang, K.; Wang, C.; Lu, D., Milk-run routing problem with progress-lane in the collection of automobile parts, Annals of Operations Research (2019) · doi:10.1007/s10479-019-03218-x
[33] Markarian, J., Six sigma: Quality processing through statistical analysis, Plastics, Additives and Compounding, 6, 4, 28-31 (2004) · doi:10.1016/S1464-391X(04)00236-3
[34] Meyers, FE; Stewart, JR, Motion and time study for lean manufacturing (2002), Pearson College Division
[35] Meza, D.; Jeong, KY, Measuring efficiency of lean six sigma project implementation using data envelopment analysis at NASA, Journal of Industrial Engineering and Management (JIEM), 6, 2, 401-422 (2013)
[36] Monden, Y., A simulation analysis of the Japanese just-in-time technique (with Kanbans) for a multiline, multistage production system’: A comment, Decision Sciences, 15, 3, 445-447 (1984) · doi:10.1111/j.1540-5915.1984.tb01229.x
[37] Monkman, SK; Morrice, DJ; Bard, JF, A Production scheduling heuristic for an electronics manufacturer with sequence-dependent setup costs, European Journal of Operational Research, 187, 3, 1100-1114 (2008) · Zbl 1137.90509 · doi:10.1016/j.ejor.2006.06.063
[38] Naylor, JB; Naim, MM; Berry, D., Leagility: Integrating the lean and agile manufacturing paradigms in the total supply chain, International Journal of Production Economics, 62, 1-2, 107-118 (1999) · doi:10.1016/S0925-5273(98)00223-0
[39] Negahban, A.; Smith, JS, Simulation for manufacturing system design and operation: Literature review and analysis, Journal of Manufacturing Systems, 33, 2, 241-261 (2014) · doi:10.1016/j.jmsy.2013.12.007
[40] Nemati, M.; Kazemi Matin, R.; Toloo, M., A two-stage DEA model with partial impacts between inputs and outputs: Application in refinery industries, Annals of Operations Research, 295, 285-312 (2020) · Zbl 1456.90103 · doi:10.1007/s10479-020-03665-x
[41] Nicholas, J., Lean production for competitive advantage: A comprehensive guide to lean methodologies and management practices (2015), CRC Press
[42] Ohlmann, JW; Fry, MJ; Thomas, BW, Route design for lean production systems, Transportation Science, 42, 3, 352-370 (2008) · doi:10.1287/trsc.1070.0222
[43] Ohno, T., Toyota production system: Beyond large-scale production (1988), CRC Press
[44] Porter, ME, How competitive forces shape strategy, Readings in strategic management, 133-143 (1989), Palgrave · doi:10.1007/978-1-349-20317-8_10
[45] Rahani, AR; Al-Ashraf, M., Production flow analysis through value stream mapping: A lean manufacturing process case study, Procedia Engineering, 41, 1727-1734 (2012) · doi:10.1016/j.proeng.2012.07.375
[46] Rekiek, B.; Dolgui, A.; Delchambre, A.; Bratcu, A., State of art of optimization methods for assembly line design, Annual Reviews in Control, 26, 2, 163-174 (2002) · doi:10.1016/S1367-5788(02)00027-5
[47] Robinson, S., Simulation: The practice of model development and use (2004), Wiley Chichester
[48] Scholl, A.; Boysen, N.; Fliedner, M., Optimally solving the alternative subgraphs assembly line balancing problem, Annals of Operations Research, 172, 1, 243 (2009) · Zbl 1181.90107 · doi:10.1007/s10479-009-0578-4
[49] Singh, B. J., & Khanduja, D. (2010). SMED: For quick changeovers in foundry SMEs. International Journal of Productivity and Performance Management.
[50] Soroush, H.; Sajjadi, SM; Arabzad, SM, Efficiency analysis and optimisation of a multi-product assembly line using simulation, International Journal of Productivity and Quality Management, 13, 1, 89-104 (2014) · doi:10.1504/IJPQM.2014.057961
[51] Suarez, FF; Cusumano, MA; Fine, CH, An empirical study of flexibility in manufacturing, MIT Sloan Management Review, 37, 1, 25 (1995)
[52] Sullivan, WG; McDonald, TN; Van Aken, EM, Equipment replacement decisions and lean manufacturing, Robotics and Computer-Integrated Manufacturing, 18, 3-4, 255-265 (2002) · doi:10.1016/S0736-5845(02)00016-9
[53] Susilawati, A.; Tan, J.; Bell, D.; Sarwar, M., Fuzzy logic based method to measure degree of lean activity in manufacturing industry, Journal of Manufacturing Systems, 34, 1-11 (2015) · doi:10.1016/j.jmsy.2014.09.007
[54] Trovinger, SC; Bohn, RE, Setup time reduction for electronics assembly: Combining simple (SMED) and IT-based methods, Production and Operations Management, 14, 2, 205-217 (2005) · doi:10.1111/j.1937-5956.2005.tb00019.x
[55] Van Goubergen, D., Setup reduction for lean cells and multi-machine situations, Lean business systems and beyond, 295-303 (2008), Springer · doi:10.1007/978-0-387-77249-3_31
[56] Villarreal, B.; Garza-Reyes, JA; Kumar, V.; Lim, MK, Improving road transport operations through lean thinking: A case study, International Journal of Logistics Research and Applications, 20, 2, 163-180 (2017) · doi:10.1080/13675567.2016.1170773
[57] Vinodh, S.; Balaji, SR, Fuzzy logic based leanness assessment and its decision support system, International Journal of Production Research, 49, 13, 4027-4041 (2011) · doi:10.1080/00207543.2010.492408
[58] Vinodh, S.; Chintha, SK, Leanness assessment using multi-grade fuzzy approach, International Journal of Production Research, 49, 2, 431-445 (2011) · doi:10.1080/00207540903471494
[59] Womack, JP; Jones, DT, Lean thinking—Banish waste and create wealth in your corporation, Journal of the Operational Research Society, 48, 11, 1148-1148 (1997) · doi:10.1057/palgrave.jors.2600967
[60] Wu, Z.; Xu, J.; Xu, Z., A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers, Annals of Operations Research, 247, 2, 735-757 (2016) · Zbl 1360.90149 · doi:10.1007/s10479-015-1788-6
[61] Yang, T.; Kuo, Y.; Su, CT; Hou, CL, Lean production system design for fishing net manufacturing using lean principles and simulation optimization, Journal of Manufacturing Systems, 34, 66-73 (2015) · doi:10.1016/j.jmsy.2014.11.010
[62] Zaim, S.; Bayyurt, N.; Turkyilmaz, A.; Solakoglu, N.; Zaim, H., Measuring and evaluating efficiency of hospitals through total quality management, Journal of Transnational Management, 12, 4, 77-97 (2008) · doi:10.1300/J482v12n04_05
[63] Zarrin, M.; Azadeh, A., Simulation optimization of lean production strategy by considering resilience engineering in a production system with maintenance policies, SIMULATION, 93, 1, 49-68 (2017) · doi:10.1177/0037549716666682
[64] Zhou, Z.; Wang, M.; Ding, H.; Ma, C.; Liu, W., Further study of production possibility set and performance evaluation model in supply chain DEA, Annals of Operations Research, 206, 1, 585-592 (2013) · Zbl 1272.91075 · doi:10.1007/s10479-013-1365-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.