×

Robust homography-based visual servo control for a quadrotor UAV tracking a moving target. (English) Zbl 1507.93060

Summary: In this study, a new robust homography-based visual tracking control approach for the quadrotor unmanned aerial vehicle (UAV) is developed. Specifically, employing the homography matrix as feedback, a hierarchical homography-based visual servoing (HBVS) scheme with a new command attitude extraction method to account for the underactuation of UAV is proposed. On this basis, a smooth hyperbolic tangent function is fulfilled as an augmented part of the backstepping control scheme, which guarantees the non-negative total thrust and avoid singularity. Additionally, a cascaded filter-based estimator and adaptive laws with integrable functions are embedded to counteract uncertainties including external perturbations, unknown acceleration of the moving target, and unknown image depth, and to facilitate the system’s asymptotic stability simultaneously. The theoretical analysis testifies that the whole close-loop system is asymptotically stable. Simulations further verify that the proposed HBVS controller can realize the visual tracking with a superior performance.

MSC:

93B35 Sensitivity (robustness)
93C40 Adaptive control/observation systems
93C85 Automated systems (robots, etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lotufo, M. A.; Colangelo, L.; Novara, C., Control design for UAV quadrotors via embedded model control, IEEE Trans. Control Syst. Technol., 28, 5, 1741-1756 (2020)
[2] Cui, L.; Hou, X.; Zuo, Z.; Yang, H., An adaptive fast super-twisting disturbance observer-based dual closed-loop attitude control with fixed-time convergence for UAV, J. Frankl. Inst. (2022) · Zbl 1485.93285
[3] Invernizzi, D.; Lovera, M., Trajectory tracking control of thrust-vectoring UAVs, Automatica, 95, 180-186 (2018) · Zbl 1402.93182
[4] Chaumette, F.; Hutchinson, S., Visual servo control, part I: basic approaches, IEEE Robot. Autom. Mag., 4, 13, 82-90 (2006)
[5] Zhao, W.; Liu, H.; Wang, X., Robust visual servoing control for quadrotors landing on a moving target, J. Frankl. Inst., 358, 4, 2301-2319 (2021) · Zbl 1459.93124
[6] Zhang, X.; Xian, B.; Zhao, B.; Zhang, Y., Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision, IEEE Trans. Ind. Electron., 62, 10, 6392-6403 (2015)
[7] Dong, J.; Zhang, J., A new image-based visual servoing method with velocity direction control, J. Frankl. Inst., 357, 7, 3993-4007 (2020) · Zbl 1437.93090
[8] Wang, F.; Liu, Z.; Chen, C. P.; Zhang, Y., Robust adaptive visual tracking control for uncertain robotic systems with unknown dead-zone inputs, J. Frankl. Inst., 356, 12, 6255-6279 (2019) · Zbl 1416.93064
[9] Wang, Z.; Kim, D.-J.; Behal, A., Design of stable visual servoing under sensor and actuator constraints via a Lyapunov-based approach, IEEE Trans. Control Syst. Technol., 20, 6, 1575-1582 (2012)
[10] Zhang, K.; Chen, J.; Jia, B., Asymptotic moving object tracking with trajectory tracking extension: a homography-ased approach, Int. J. Robust Nonlinear Control, 27, 18, 4664-4685 (2017) · Zbl 1379.93053
[11] Wang, N.; He, H., Adaptive homography-based visual servo for micro unmanned surface vehicles, Int. J. Adv. Manuf. Technol., 105, 12, 4875-4882 (2019)
[12] Qiu, Y.; Li, B.; Shi, W.; Chen, Y., Homography-based visual servo tracking control of wheeled mobile robots with simultaneous depth identification, International Conference on Neural Information Processing, 324-333 (2017), Springer
[13] Parikh, A.; Kamalapurkar, R.; Chen, H.-Y.; Dixon, W. E., Homography based visual servo control with scene reconstruction, 2015 54th IEEE Conference on Decision and Control (CDC), 6972-6977 (2015)
[14] https://www.sciencedirect.com/science/article/pii/S0016003219303072 · Zbl 1415.93082
[15] Hua, M.-D.; Allibert, G.; Krupínski, S.; Hamel, T., Homography-based visual servoing for autonomous underwater vehicles, IFAC Proc. Vol., 47, 3, 5726-5733 (2014)
[16] Nguyen, L.-H.; Hua, M.-D.; Allibert, G.; Hamel, T., A homography-based dynamic control approach applied to station keeping of autonomous underwater vehicles without linear velocity measurements, IEEE Trans. Control Syst. Technol., 29, 5, 2065-2078 (2021)
[17] Krupnski, S.; Allibert, G.; Hua, M.-D.; Hamel, T., An inertial-aided homography-based visual servo control approach for (almost) fully actuated autonomous underwater vehicles, IEEE Trans. Robot., 33, 5, 1041-1060 (2016)
[18] Plinval, H.; Morin, P.; Mouyon, P.; Hamel, T., Visual servoing for underactuated VTOL UAVs: a linear, homography-ased framework, Int. J. Robust Nonlinear Control, 24, 16, 2285-2308 (2014) · Zbl 1302.93159
[19] Zhong, H.; Wang, Y.; Miao, Z.; Li, L.; Fan, S.; Zhang, H., A homography-based visual servo control approach for an underactuated unmanned aerial vehicles in gps-denied environments, IEEE Trans. Intell. Veh. (2022)
[20] Huang, Y.; Zhu, M.; Zheng, Z.; Low, K. H., Homography-based visual servoing for underactuated VTOL UAVs tracking a 6-DOF moving ship, IEEE Trans. Veh. Technol., 71, 3, 2385-2398 (2022)
[21] Hua, M.; Hamel, T.; Morin, P.; Samson, C., Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles, IEEE Control Syst. Mag., 33, 1, 61-75 (2013) · Zbl 1395.93395
[22] Zou, Y., Nonlinear hierarchical control for quad-rotors with rotation matrix, Int. J. Control, 90, 7, 1308-1318 (2017) · Zbl 1367.93012
[23] Yan, K.; Chen, M.; Wu, Q.; Zhu, R., Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults, Chin. J. Aeronaut., 32, 10, 2299-2310 (2019)
[24] Zhao, B.; Xian, B.; Zhang, Y.; Zhang, X., Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method, Int. J. Robust Nonlinear Control, 25, 18, 3714-3731 (2015) · Zbl 1336.93041
[25] Zou, Y., Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors, Int. J. Robust Nonlinear Control, 27, 6, 925-941 (2017) · Zbl 1369.93133
[26] Huang, Y.; Zhu, M.; Zheng, Z.; Feroskhan, M., Fixed-time autonomous shipboard landing control of a helicopter with external disturbances, Aerosp. Sci. Technol., 84, 18-30 (2019)
[27] Zuo, Z.; Wang, C., Adaptive trajectory tracking control of output constrained multi-rotors systems, IET Control Theory Appl., 8, 13, 1163-1174 (2014)
[28] Huang, Y.; Zhu, M.; Zheng, Z., Output-constrained fixed-time control for autonomous ship landing of helicopters, ISA Trans., 106, 221-232 (2020)
[29] Wei, L.; Chen, M.; Li, T., Disturbance-observer-based formation-containment control for UAVs via distributed adaptive event -triggered mechanisms, J. Frankl. Inst., 358, 10, 5305-5333 (2021) · Zbl 1467.93226
[30] https://www.sciencedirect.com/science/article/pii/S0016003219303461 · Zbl 1450.93066
[31] Yu, Z.; Zhang, Y.; Liu, Z.; Qu, Y.; Su, C.-Y.; Jiang, B., Decentralized finite-time adaptive fault-tolerant synchronization tracking control for multiple UAVs with prescribed performance, J. Frankl. Inst., 357, 16, 11830-11862 (2020) · Zbl 1450.93001
[32] https://www.sciencedirect.com/science/article/pii/S0925231221015733
[33] Xia, K.; Lee, S.; Son, H., Adaptive control for multi-rotor UAVs autonomous ship landing with mission planning, Aerosp. Sci. Technol., 96, 105549 (2020)
[34] Zhou, W.; Li, B.; Sun, J.; Wen, C.-Y.; Chen, C.-K., Position control of a tail-sitter UAV using successive linearization based model predictive control, Control Eng. Pract., 91, 104125 (2019)
[35] Slotine, J.-J. E.; Li, W., Applied Nonlinear Control (1991), Prentice Hall · Zbl 0753.93036
[36] Zou, Y.; Zhou, Z.; Dong, X.; Meng, Z., Distributed formation control for multiple vertical takeoff and landing UAVs with switching topologies, IEEE/ASME Trans. Mechatron., 23, 4, 1750-1761 (2018)
[37] Asl, H. J.; Yoon, J., Bounded-nput control of the quadrotor unmanned aerial vehicle: a vision-ased approach, Asian J. Control, 19, 3, 840-855 (2017) · Zbl 1366.93396
[38] Serra, P.; Cunha, R.; Hamel, T.; Silvestre, C.; Bras, F. L., Nonlinear image-based visual servo controller for the flare maneuver of fixed-wing aircraft using optical flow, IEEE Trans. Control Syst. Technol., 23, 2, 570-583 (2014)
[39] Farrell, J. A.; Polycarpou, M.; Sharma, M.; Dong, W., Command filtered backstepping, IEEE Trans. Autom. Control, 54, 6, 1391-1395 (2009) · Zbl 1367.93382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.