×

Multiple moving agents on complex networks: from intermittent synchronization to complete synchronization. (English) Zbl 07662574

Summary: We investigate multiple moving agents on complex networks. Each of them takes a random walk strategy and carries a chaotic oscillator. Remarkably, we find that with increasing the number of agents, a significant transition occurs from intermittent synchronization to complete synchronization. In particular, we observe that the distribution of laminar length presents a clearly power-law behavior in the intermittent synchronization stage. While reaching a complete synchronization state, correlation dimension and recurrence time statistics of synchronous orbits are in excellent agreement with that of their carrying chaotic system under consideration. Our work reveals that the number of moving agents has a profound effect on shaping synchronization behaviors.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153 (2008)
[2] Rodrigues, F. A.; Peron, T. K.D.; Ji, P.; Kurths, J., The kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089
[3] Weng, T.; Yang, H.; Gu, C.; Zhang, J.; Small, M., Synchronization of chaotic systems and their machine-learning models, Phys. Rev. E, 99, Article 042203 pp. (2019)
[4] Chen, G., Searching for best network topologies with optimal synchronizability: A brief review, IEEE/CAA J. Autom. Sin., 9, 573-577 (2022)
[5] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol., 16, 15-42 (1967)
[6] Strogatz, S. H.; Abrams, D. M.; McRobie, A.; Eckhardt, B.; Ott, E., Crowd synchrony on the millennium bridge, Nature, 438, 43-44 (2005)
[7] Uhlhaas, P. J.; Singer, W., Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron, 52, 155-168 (2006)
[8] Wang, X. F., Complex networks: topology, dynamics and synchronization, Int. J. Bifurcation Chaos, 12, 885-916 (2002) · Zbl 1044.37561
[9] Ma, C.; Yang, Q.; Wu, X.; Lu, J.-a., Cluster synchronization: From single-layer to multi-layer networks, Chaos, 29, Article 123120 pp. (2019) · Zbl 1429.34056
[10] Ghosh, D.; Frasca, M.; Rizzo, A.; Majhi, S.; Rakshit, S.; Alfaro-Bittner, K.; Boccaletti, S., The synchronized dynamics of time-varying networks, Phys. Rep., 949, 1-63 (2022) · Zbl 1503.93025
[11] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662-665 (2012)
[12] Nicosia, V.; Valencia, M.; Chavez, M.; Díaz-Guilera, A.; Latora, V., Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, Article 174102 pp. (2013)
[13] Xu, C.; Boccaletti, S.; Guan, S.; Zheng, Z., Origin of bellerophon states in globally coupled phase oscillators, Phys. Rev. E, 98, Article 050202 pp. (2018)
[14] Couzin, I., Collective minds, Nature, 445, 715 (2007)
[15] Herbert-Read, J. E., Understanding how animal groups achieve coordinated movement, J. Exp. Biol., 219, 2971-2983 (2016)
[16] Quillen, A. C.; Peshkov, A.; Wright, E.; McGaffigan, S., Metachronal waves in concentrations of swimming Turbatrix aceti nematodes and an oscillator chain model for their coordinated motions, Phys. Rev. E, 104, Article 014412 pp. (2021)
[17] Peshkov, A.; McGaffigan, S.; Quillen, A. C., Synchronized oscillations in swarms of nematode Turbatrix aceti, Soft Matter, 18, 1174-1182 (2022)
[18] Buscarino, A.; Fortuna, L.; Frasca, M.; Rizzo, A., Dynamical network interactions in distributed control of robots, Chaos, 16, Article 015116 pp. (2006) · Zbl 1144.37329
[19] Barciś, A.; Bettstetter, C., Sandsbots: Robots that sync and swarm, IEEE Access, 8, Article 218752-218764 (2020)
[20] Iwasa, M.; Tanaka, D., Dimensionality of clusters in a swarm oscillator model, Phys. Rev. E, 81, Article 066214 pp. (2010)
[21] O’Keeffe, K. P.; Hong, H.; Strogatz, S. H., Oscillators that sync and swarm, Nature Commun., 8, 1-13 (2017)
[22] O’Keeffe, K.; Ceron, S.; Petersen, K., Collective behavior of swarmalators on a ring, Phys. Rev. E, 105, Article 014211 pp. (2022)
[23] Fujiwara, N.; Kurths, J.; Díaz-Guilera, A., Synchronization in networks of mobile oscillators, Phys. Rev. E, 83, Article 025101 pp. (2011)
[24] Fujiwara, N.; Kurths, J.; Díaz-Guilera, A., Synchronization of mobile chaotic oscillator networks, Chaos, 26, Article 094824 pp. (2016) · Zbl 1382.34041
[25] Majhi, S.; Ghosh, D., Synchronization of moving oscillators in three dimensional space, Chaos, 27, Article 053115 pp. (2017) · Zbl 1390.90138
[26] Majhi, S.; Ghosh, D.; Kurths, J., Emergence of synchronization in multiplex networks of mobile rössler oscillators, Phys. Rev. E, 99, Article 012308 pp. (2019)
[27] Levis, D.; Pagonabarraga, I.; Liebchen, B., Activity induced synchronization: Mutual flocking and chiral self-sorting, Phys. Rev. Res., 1, Article 023026 pp. (2019)
[28] Leoni, M.; Liverpool, T. B., Synchronization and liquid crystalline order in soft active fluids, Phys. Rev. Lett., 112, Article 148104 pp. (2014)
[29] He, D.; Stone, L., Spatio-temporal synchronization of recurrent epidemics, Proc. R. Soc. Lond. Ser. B, 270, 1519-1526 (2003)
[30] Mosekilde, E.; Maistrenko, Y.; Postnov, D., Chaotic Synchronization: Applications To Living Systems (2002), World Scientific: World Scientific New Jersey · Zbl 0999.37022
[31] Laguna, M. F.; Abramson, G.; Zanette, D. H., Minorities in a model for opinion formation, Complexity, 9, 31-36 (2004)
[32] Noh, J. D.; Rieger, H., Random walks on complex networks, Phys. Rev. Lett., 92, Article 118701 pp. (2004)
[33] Weng, T.; Zhang, J.; Small, M.; Harandizadeh, B.; Hui, P., Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law, Phys. Rev. E, 97, Article 032320 pp. (2018)
[34] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[35] Choudhary, A.; Mitra, C.; Kohar, V.; Sinha, S.; Kurths, J., Small-world networks exhibit pronounced intermittent synchronization, Chaos, 27, Article 111101 pp. (2017) · Zbl 1390.34126
[36] Weng, T.; Zhao, Y.; Small, M.; Huang, D. D., Time-series analysis of networks: Exploring the structure with random walks, Phys. Rev. E, 90, Article 022804 pp. (2014)
[37] Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L., Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685 (1994)
[38] Gao, J., Recurrence time statistics for chaotic systems and their applications, Phys. Rev. Lett., 83, 3178 (1999)
[39] Gao, J.; Cai, H., On the structures and quantification of recurrence plots, Phys. Lett. A, 270, 75-87 (2000)
[40] Grassberger, P.; Procaccia, I., Characterization of strange attractors, Phys. Rev. Lett., 50, 346 (1983)
[41] Weng, T.; Zhang, J.; Small, M.; Hui, P., Multiple random walks on complex networks: A harmonic law predicts search time, Phys. Rev. E, 95, Article 052103 pp. (2017)
[42] Riascos, A. P.; Mateos, J. L., Long-range navigation on complex networks using lévy random walks, Phys. Rev. E, 86, Article 056110 pp. (2012)
[43] Meyer, H.; Rieger, H., Optimal non-markovian search strategies with n-step memory, Phys. Rev. Lett., 127, Article 070601 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.