×

First principle study of gravitational pressure and thermodynamics of FRW universe. (English) Zbl 07671446

Summary: We make a first principle study of gravitational pressure in cosmic thermodynamics. The pressure is directly derived from the unified first law, in fact the Einstein field equation in spherically symmetric spacetime. By using this pressure, we obtain the thermodynamics for the FRW universe, especially presenting the gravitational equation of state for the FRW spacetime itself, i.e. \(P = P (R_A, T)\) for the first time. Furthermore, we study the Joule-Thomson expansion as an application of the thermodynamic equation of state to find the cooling-heating property of the FRW universe. We demonstrate that there is an inversion temperature for a FRW universe if its enthalpy \(\mathcal{H}\) is negative. These investigations shed insights on the evolution of our universe in view of thermodynamics.

MSC:

81-XX Quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[2] J.M. Bardeen, B. Carter and S.W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161 [INSPIRE]. · Zbl 1125.83309
[3] J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D9 (1974) 3292 [INSPIRE].
[4] Cai, R-G; Kim, SP, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP, 02, 050 (2005) · doi:10.1088/1126-6708/2005/02/050
[5] Gong, Y.; Wang, A., The Friedmann equations and thermodynamics of apparent horizons, Phys. Rev. Lett., 99 (2007) · Zbl 1228.83067 · doi:10.1103/PhysRevLett.99.211301
[6] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D15 (1977) 2738 [INSPIRE].
[7] Hayward, SA, Unified first law of black hole dynamics and relativistic thermodynamics, Class. Quant. Grav., 15, 3147 (1998) · Zbl 0942.83040 · doi:10.1088/0264-9381/15/10/017
[8] Cai, R-G; Cao, L-M, Unified first law and thermodynamics of apparent horizon in FRW universe, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.064008
[9] Maeda, H.; Nozawa, M., Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.064031
[10] Cai, R-G; Cao, L-M; Hu, Y-P; Ohta, N., Generalized Misner-Sharp Energy in f(R) Gravity, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.104016
[11] Hu, Y-P; Zhang, H., Misner-Sharp Mass and the Unified First Law in Massive Gravity, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.024006
[12] Kubiznak, D.; Mann, RB, P-V criticality of charged AdS black holes, JHEP, 07, 033 (2012) · Zbl 1397.83072 · doi:10.1007/JHEP07(2012)033
[13] Xu, J.; Cao, L-M; Hu, Y-P, P-V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.124033
[14] Cai, R-G; Hu, Y-P; Pan, Q-Y; Zhang, Y-L, Thermodynamics of Black Holes in Massive Gravity, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.024032
[15] Kubiznak, D.; Mann, RB; Teo, M., Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav., 34 (2017) · Zbl 1368.83002 · doi:10.1088/1361-6382/aa5c69
[16] Kubiznak, D.; Mann, RB, Black hole chemistry, Can. J. Phys., 93, 999 (2015) · doi:10.1139/cjp-2014-0465
[17] Hu, Y-P; Zeng, H-A; Jiang, Z-M; Zhang, H., P-V criticality in the extended phase space of black holes in Einstein-Horndeski gravity, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.084004
[18] Gunasekaran, S.; Mann, RB; Kubiznak, D., Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP, 11, 110 (2012) · doi:10.1007/JHEP11(2012)110
[19] Wei, S-W; Liu, Y-X, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.044014
[20] Cheng, P.; Wei, S-W; Liu, Y-X, Critical phenomena in the extended phase space of Kerr-Newman-AdS black holes, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.024025
[21] Wei, S-W; Liu, Y-X, Extended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS space, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.104018
[22] Hendi, SH; Vahidinia, MH, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.084045
[23] Hendi, SH; Mann, RB; Panahiyan, S.; Eslam Panah, B., Van der Waals like behavior of topological AdS black holes in massive gravity, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.021501
[24] Cai, R-G; Cao, L-M; Li, L.; Yang, R-Q, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP, 09, 005 (2013) · doi:10.1007/JHEP09(2013)005
[25] Altamirano, N.; Kubiznak, D.; Mann, RB, Reentrant phase transitions in rotating anti-de Sitter black holes, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.101502
[26] Altamirano, N.; Kubiznak, D.; Mann, RB; Sherkatghanad, Z., Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies, 2, 89 (2014) · doi:10.3390/galaxies2010089
[27] Bhattacharya, K.; Majhi, BR; Samanta, S., Van der Waals criticality in AdS black holes: a phenomenological study, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.084037
[28] Li, R.; Wang, J., Hawking radiation and P v criticality of charged dynamical (Vaidya) black hole in anti-de Sitter space, Phys. Lett. B, 813 (2021) · Zbl 1476.83094 · doi:10.1016/j.physletb.2020.136035
[29] Hu, Y-P; Cai, L.; Liang, X.; Kong, S-B; Zhang, H., Divergence behavior of thermodynamic curvature scalar at critical point in the extended phase space of generic black holes, Phys. Lett. B, 822 (2021) · Zbl 07417971 · doi:10.1016/j.physletb.2021.136661
[30] Kastor, D.; Ray, S.; Traschen, J., Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav., 26 (2009) · Zbl 1178.83030 · doi:10.1088/0264-9381/26/19/195011
[31] Dolan, BP, The cosmological constant and the black hole equation of state, Class. Quant. Grav., 28 (2011) · Zbl 1219.83135 · doi:10.1088/0264-9381/28/12/125020
[32] Dolan, BP, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav., 28 (2011) · Zbl 1231.83020 · doi:10.1088/0264-9381/28/23/235017
[33] Cvetič, M.; Gibbons, GW; Kubiznak, D.; Pope, CN, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.024037
[34] Debnath, U., Thermodynamics of FRW Universe: Heat Engine, Phys. Lett. B, 810 (2020) · Zbl 1475.83133 · doi:10.1016/j.physletb.2020.135807
[35] Jacobson, T., Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett., 75, 1260 (1995) · Zbl 1020.83609 · doi:10.1103/PhysRevLett.75.1260
[36] Cai, R-G; Cao, L-M; Hu, Y-P, Corrected Entropy-Area Relation and Modified Friedmann Equations, JHEP, 08, 090 (2008) · doi:10.1088/1126-6708/2008/08/090
[37] Akbar, M.; Cai, R-G, Thermodynamic Behavior of Friedmann Equations at Apparent Horizon of FRW Universe, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.084003
[38] Akbar, M.; Cai, R-G, Thermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett. B, 648, 243 (2007) · Zbl 1248.83102 · doi:10.1016/j.physletb.2007.03.005
[39] Zhang, H.; Li, X-Z, From thermodynamics to the solutions in gravity theory, Phys. Lett. B, 737, 395 (2014) · Zbl 1317.83077 · doi:10.1016/j.physletb.2014.09.010
[40] Zhang, H.; Hayward, SA; Zhai, X-H; Li, X-Z, Schwarzschild solution as a result of thermodynamics, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.064052
[41] Kong, S-B; Abdusattar, H.; Yin, Y.; Zhang, H.; Hu, Y-P, The P V phase transition of the FRW universe, Eur. Phys. J. C, 82, 1047 (2022) · doi:10.1140/epjc/s10052-022-10976-9
[42] Ökcü, O.; Aydıner, E., Joule-Thomson expansion of the charged AdS black holes, Eur. Phys. J. C, 77, 24 (2017) · doi:10.1140/epjc/s10052-017-4598-y
[43] Ökcü, O.; Aydıner, E., Joule-Thomson expansion of Kerr-AdS black holes, Eur. Phys. J. C, 78, 123 (2018) · doi:10.1140/epjc/s10052-018-5602-x
[44] Lan, S-Q, Joule-Thomson expansion of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.084014
[45] Pu, J.; Guo, S.; Jiang, Q-Q; Zu, X-T, Joule-Thomson expansion of the regular(Bardeen)-AdS black hole, Chin. Phys. C, 44 (2020) · doi:10.1088/1674-1137/44/3/035102
[46] Li, C.; He, P.; Li, P.; Deng, J-B, Joule-Thomson expansion of the Bardeen-AdS black holes, Gen. Rel. Grav., 52, 50 (2020) · Zbl 1443.83035 · doi:10.1007/s10714-020-02704-z
[47] Rajani, KV; Rizwan, CLA; Naveena Kumara, A.; Ali, MS; Vaid, D., Joule-Thomson expansion of regular Bardeen AdS black hole surrounded by static anisotropic matter field, Phys. Dark Univ., 32, 100825 (2021) · doi:10.1016/j.dark.2021.100825
[48] Bi, S.; Du, M.; Tao, J.; Yao, F., Joule-Thomson expansion of Born-Infeld AdS black holes, Chin. Phys. C, 45 (2021) · doi:10.1088/1674-1137/abcf23
[49] Ghaffarnejad, H.; Yaraie, E.; Farsam, M., Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson effect, Int. J. Theor. Phys., 57, 1671 (2018) · Zbl 1395.83050 · doi:10.1007/s10773-018-3693-7
[50] Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S., Joule-Thomson Expansion of RN-AdS Black Holes in f (R) gravity, LHEP, 02, 05 (2018) · doi:10.31526/LHEP.2.2018.02
[51] Mahdavian Yekta, D.; Hadikhani, A.; Ökcü, O., Joule-Thomson expansion of charged AdS black holes in Rainbow gravity, Phys. Lett. B, 795, 521 (2019) · doi:10.1016/j.physletb.2019.06.049
[52] Mo, J-X; Li, G-Q; Lan, S-Q; Xu, X-B, Joule-Thomson expansion of d-dimensional charged AdS black holes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.124032
[53] Kuang, X-M; Liu, B.; Övgün, A., Nonlinear electrodynamics AdS black hole and related phenomena in the extended thermodynamics, Eur. Phys. J. C, 78, 840 (2018) · doi:10.1140/epjc/s10052-018-6320-0
[54] J.-T. Xing, Y. Meng and X.-M. Kuang, Joule-Thomson expansion for hairy black holes, Phys. Lett. B820 (2021) 136604 [INSPIRE]. · Zbl 07414594
[55] Cisterna, A.; Hu, S-Q; Kuang, X-M, Joule-Thomson expansion in AdS black holes with momentum relaxation, Phys. Lett. B, 797 (2019) · Zbl 1427.83037 · doi:10.1016/j.physletb.2019.134883
[56] Liang, J.; Mu, B.; Wang, P., Joule-Thomson expansion of lower-dimensional black holes, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.124003
[57] Di Valentino, E.; Melchiorri, A.; Silk, J., Planck evidence for a closed Universe and a possible crisis for cosmology, Nature Astron., 4, 196 (2019) · doi:10.1038/s41550-019-0906-9
[58] Handley, W., Curvature tension: evidence for a closed universe, Phys. Rev. D, 103, L041301 (2021) · doi:10.1103/PhysRevD.103.L041301
[59] Di Dio, E.; Montanari, F.; Raccanelli, A.; Durrer, R.; Kamionkowski, M.; Lesgourgues, J., Curvature constraints from Large Scale Structure, JCAP, 06, 013 (2016) · doi:10.1088/1475-7516/2016/06/013
[60] Bel, J.; Larena, J.; Maartens, R.; Marinoni, C.; Perenon, L., Constraining spatial curvature with large-scale structure, JCAP, 09, 076 (2022) · doi:10.1088/1475-7516/2022/09/076
[61] Hayward, SA, Gravitational energy in spherical symmetry, Phys. Rev. D, 53, 1938 (1996) · doi:10.1103/PhysRevD.53.1938
[62] Cai, R-G; Cao, L-M; Hu, Y-P, Hawking Radiation of Apparent Horizon in a FRW Universe, Class. Quant. Grav., 26 (2009) · Zbl 1172.83347 · doi:10.1088/0264-9381/26/15/155018
[63] Hu, Y-P, Hawking radiation from the cosmological horizon in a FRW universe, Phys. Lett. B, 701, 269 (2011) · doi:10.1016/j.physletb.2011.05.054
[64] Dolan, BP; Kastor, D.; Kubiznak, D.; Mann, RB; Traschen, J., Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.104017
[65] Zhang, H.; Hu, Y-p; Zhang, Y., Towards a sound massive cosmology, Phys. Dark Univ., 23 (2019) · doi:10.1016/j.dark.2018.100257
[66] Banihashemi, B.; Jacobson, T., Thermodynamic ensembles with cosmological horizons, JHEP, 07, 042 (2022) · Zbl 1522.83125 · doi:10.1007/JHEP07(2022)042
[67] B. Banihashemi, T. Jacobson, A. Svesko and M. Visser, The minus sign in the first law of de Sitter horizons, arXiv:2208.11706 [INSPIRE].
[68] Abdusattar, H.; Kong, S-B; Yin, Y.; Hu, Y-P, The Hawking-Page-like phase transition from FRW spacetime to McVittie black hole, JCAP, 08, 060 (2022) · Zbl 1507.83047 · doi:10.1088/1475-7516/2022/08/060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.