Alam, Irfan; Sengupta, Ambar N. Large-\( N\) limits of spaces and structures. (English) Zbl 07680182 Commun. Pure Appl. Anal. 22, No. 4, 1009-1042 (2023). Summary: For a sequence of spaces \(X_N\), with topological, algebraic or measure-theoretic structures, we show how a large-\(N\) limit \(X_\infty\) with corresponding structures is obtained. For example, when each space is a topological group \(G_N\), such as \(G_N=U(N)\), a limiting group \(G_\infty\) with topology results. Using the Weil-Kodaira construction, for compact topological groups \(G_N\) equipped with normalized Haar measures, we obtain a topological structure on \(G_\infty\) that also makes the group operations continuous. When each \(G_N\) is a Lie group we describe a Lie algebra associated to \(G_\infty\). MSC: 54J05 Nonstandard topology 28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures 28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) Keywords:large-\(N\) limits; nonstandard analysis; Loeb measure; Haar measure; ultraproducts PDFBibTeX XMLCite \textit{I. Alam} and \textit{A. N. Sengupta}, Commun. Pure Appl. Anal. 22, No. 4, 1009--1042 (2023; Zbl 07680182) Full Text: DOI References: [1] I. Alam, An introduction to the probabilistic method through the Lovász Local Lemma, arXiv: 1909.11078. [2] I. Alam, Limiting probability measures, J. Log. Anal.12 (2020), 35 pp. · Zbl 1456.28009 [3] S. R. J. T. Albeverio \(H \phi\) egh-Krohn Fenstad Lindstr \(\phi\) m, Nonstandard methods in stochastic analysis and mathematical physics (1986) · Zbl 0605.60005 [4] P. Bankston, A Survey of Ultraproduct Constructions in General Topology, arXiv: math/9709203v1. [5] A. Borovik and M. G. Katz, Who gave you the Cauchy-Weierstrass tale? The dual history of rigorous calculus, Found. Sci.. 17 (2012), 245-276. · Zbl 1279.01017 [6] H. Cartan, Théorie des filtres, C. R. Acad. Sci. Paris, 205, 595-598 (1937) · JFM 63.0569.02 [7] H. Cartan, Théorie des ultrafiltres., C. R. Acad. Sci. Paris, 205, 777-778 (1937) · JFM 63.0569.03 [8] F. A. Destrempes Sengupta, Configurations of points in sets of positive measure and in Baire sets of second category, Fund. Math., 133, 155-159 (1989) · Zbl 0728.28011 · doi:10.4064/fm-133-2-155-159 [9] B. K. F. B. C. T. Driver Gabriel Hall Kemp, The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces, Commun. Math. Phys., 352, 967-978 (2017) · Zbl 1364.81183 · doi:10.1007/s00220-017-2857-2 [10] T. D. A. Frayne Scott Tarski, Reduced Products., Notices, Amer. Math. Soc., 5, 673-674 (1958) [11] T. E. Frayne, A. Morel and D. Scott, Reduced direct products, Fund. Math.. 51 (1962), 195-228. · Zbl 0108.00501 [12] I. Goldbring, Nonstandard hulls of locally exponential Lie algebras, J. Log. Anal., 1 (2009), 25 pp. · Zbl 1275.22016 [13] I. Goldbring, Nonstandard hulls of locally uniform groups, Fund. Math., 220, 93-118 (2013) · Zbl 1272.22008 · doi:10.4064/fm220-2-1 [14] I. Goldbring, Ultrafilters Throughout Mathematics, American Mathematical Society, Providence, RI (2022). · Zbl 1508.03001 [15] D. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nuclear Phys. B. 437 (1995), 541-584. · Zbl 1052.81560 [16] L. C. A. Gross King Sengupta, Two-dimensional Yang-Mills theory via stochastic differential equations, Ann. Phys., 194, 65-112 (1989) · Zbl 0698.60047 · doi:10.1016/0003-4916(89)90032-8 [17] P. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950 · Zbl 0040.16802 [18] H. J. Keisler, A survey of ultraproducts, Logic, Methodology And Philos. Sci. (Proc. 1964 Internat. Congr.). pp. 112-126 (1965) · Zbl 0156.02201 [19] K. Kodaira, über die Beziehung zwischen den Massen und den Topologien in einer Gruppe, Proc. Phys.-Math. Soc. Japan (3). 23 (1941), 67-119. · JFM 67.0750.02 [20] T. Lévy, The master field on the plane, Astérisque., ix+201 (2017) · Zbl 1383.60001 [21] P. A. Loeb, A combinatorial analog of Lyapunov’s theorem for infinitesimally generated atomic vector measures, Proc. Amer. Math. Soc.. 39 (1973), 585-586. · Zbl 0271.28007 [22] P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc.. 211 (1975), 113-122. · Zbl 0312.28004 [23] J. Łoś, Quelques Remarques, Thèorémes et Problémes sur les Classes Dèfinissables d’Algébres, in Mathematical Interpretation Of Formal Systems, 1955. · Zbl 0068.24401 [24] R. Parikh, A nonstandard theory of topological groups, in Applications Of Model Theory To Algebra, Analysis, And Probability (Internat. Sympos., Pasadena, Calif., 1967), 1969. [25] A. Robinson, Non-Standard Analysis, North-Holland Publishing Co., Amsterdam (1966) · Zbl 0151.00803 [26] P. Samuel, Ultrafilters and compactification of Uniform Spaces. (ProQuest LLC, Ann Arbor, MI, 1947), Ph.D thesis, Princeton University, 1947. [27] A. Sengupta, Quantum gauge theory on compact surfaces, Ann. Physics. 221 (1993), 17-52. · Zbl 0767.53060 [28] I. M. Singer, On the master field in two dimensions, in Functional Analysis On The Eve Of The 21st Century, Vol. 1 (New Brunswick, NJ, 1993). 131 (1995), 263-281. · Zbl 0861.53075 [29] T. Tao, Ultraproducts as a Bridge Between Discrete and Continuous Analysis, https://terrytao.wordpress.com/2013/12/07/ultraproducts-as-a-bridge-between-discrete-and-continuous-analysis/. [30] A. Weil, Sur les groupes topologiques et les groupes mesures., C. R. Acad. Sci., Paris. 202 (1936), 1147-1149. · JFM 62.0440.01 [31] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale., Oeuvres Scientifiques/Collected Papers. I., (2014), 1926-1951. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.