×

Two-dimensional fractional \(\mathcal{PPT}\)-symmetric cubic-quintic NLS equation: double-loop symmetry breaking bifurcations, ghost states and dynamics. (English) Zbl 1514.35476

Summary: In this paper, we address the double-loop symmetry breaking bifurcations of optical vortex solitons in the two-dimensional (2D) fractional cubic-quintic nonlinear Schrödinger (FCQNLS) equation with an imprinted partially parity-time (\(\mathcal{PPT}\)) symmetric complex potential. The continuous branches of asymmetric solitons bifurcate from the fundamental one as the power exceeds some critical value. It is found that the symmetry breaking point is exactly the point at which the fundamental symmetric soliton is destabilized. Intriguingly, the branches of asymmetry solitons (alias ghost states) are existing with complex conjugate propagation constants, which is solely in fractional media. Moreover, the branch of asymmetric solitons crosses the branch of fundamental symmetric ones when it reaches the second critical value, and eventually merges back into it at the third critical power point. The imaginary part of the propagation constant also exhibits a circular shape. And the stability of the fundamental symmetric soliton is restored. In addition, the stability of two branches of asymmetric solitons differs from each other. The reason generating this phenomenon is analyzed in detail. Besides, the branch of dipole solitons for the first excited state is also discussed numerically, which is always stable in the process of symmetry breaking. The stability and dynamics of symmetric (fundamental and the first excited ones) and asymmetric solitons are explored via the linear stability analysis, direct simulation, modulation as well as adiabatic excitation. These results will provide some theoretical basis for the study of spontaneous symmetry breaking phenomena and related experiments in fractional media with \(\mathcal{PPT}\)-symmetric potentials.

MSC:

35R11 Fractional partial differential equations
35B32 Bifurcations in context of PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (2013), Springer: Springer Berlin · Zbl 1267.00027
[2] Jackson, R. K.; Weinstein, M. I., Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation, J. Stat. Phys., 116, 1, 881-905 (2004) · Zbl 1138.81015
[3] Matuszewski, M.; Malomed, B. A.; Trippenbach, M., Spontaneous symmetry breaking of solitons trapped in a double-channel potential, Phys. Rev. A, 75, 6, Article 063621 pp. (2007)
[4] Lee, C., Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose-Einstein condensate, Phys. Rev. Lett., 102, 7, Article 070401 pp. (2009)
[5] Wang, C.; Theocharis, G.; Kevrekidis, P. G.; Whitaker, N.; Law, K. J.H.; Frantzeskakis, D. J.; Malomed, B. A., Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential, Phys. Rev. A, 80, 4, Article 046611 pp. (2009)
[6] Zibold, T.; Nicklas, E.; Gross, C.; Oberthaler, M. K., Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett., 105, 20, Article 204101 pp. (2010)
[7] Feng, L.; Wong, Z. J.; Ma, R. M.; Wang, Y.; Zhang, X., Single-mode laser by parity-time symmetry breaking, Science, 346, 6212, 972 (2014)
[8] Alberucci, A.; Piccardi, A.; Kravets, N.; Buchnev, O.; Assanto, G., Soliton enhancement of spontaneous symmetry breaking, Optica, 2, 9, 783 (2015)
[9] Hamel, P.; Haddadi, S.; Raineri, F.; Monnier, P.; Beaudoin, G.; Sagnes, I.; Yacomotti, A. M., Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers, Nature Photon., 9, 5, 311 (2015)
[10] Vanakaras, A. G.; Photinos, D. J.; Samulski, E. T., Tilt, polarity, and spontaneous symmetry breaking in liquid crystals, Phys. Rev. E, 57, 5, R4875 (1998)
[11] Vaupotic̆, N.; C̆opic̆, M., Polarization modulation instability in liquid crystals with spontaneous chiral symmetry breaking, Phys. Rev. E, 72, 3, Article 031701 pp. (2005)
[12] Alaasar, M.; Prehm, M.; Nagaraj, M.; Vij, J. K.; Tschierske, C., A liquid crystalline phase with uniform tilt, local polar order and capability of symmetry breaking, Adv. Mater., 25, 15, 2186 (2013)
[13] Higgs, P. W., Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., 13, 16, 508 (1964)
[14] Nambu, Y.; Lecture, N., Spontaneous symmetry breaking in particle physics: a case of cross fertilization, Rev. Modern Phys., 81, 1015 (2009)
[15] Yang, C. N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 85, 5, 808 (1952) · Zbl 0046.45304
[16] Xu, D.; Han, Z. Z.; Lu, Y. K.; Gong, Q.; Qiu, C. W.; Chen, G.; Xiao, Y. F., Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking, Adv. Photon., 1, 4, Article 046002 pp. (2019)
[17] Nicoletti, O., Symmetry breaking in metamaterials, Nature Mater., 13, 9, 843 (2014)
[18] Albiez, M.; Gati, R.; Fölling, J.; Hunsmann, S.; Cristiani, M.; Oberthaler, M. K., Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 95, 1, Article 010402 pp. (2005)
[19] Albuch, L.; Malomed, B. A., Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity, Math. Comput. Simulation, 74, 4, 312 (2007) · Zbl 1111.35070
[20] Kirr, E.; Kevrekidis, P. G.; Pelinovsky, D. E., Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308, 3, 795 (2011) · Zbl 1235.34128
[21] Shi, X.; Malomed, B. A.; Ye, F.; Chen, X., Symmetric and asymmetric solitons in a nonlocal nonlinear coupler, Phys. Rev. A, 85, 5, Article 053839 pp. (2012)
[22] Li, Y.; Pang, W.; Malomed, B. A., Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A, 86, 2, Article 023832 pp. (2012)
[23] Shamriz, E.; Dror, N.; Malomed, B. A., Spontaneous symmetry breaking in a split potential box, Phys. Rev. E, 94, 2, Article 022211 pp. (2016)
[24] Bender, C. M.; Boettcher, S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80, 24, 5243 (1998) · Zbl 0947.81018
[25] Musslimani, Z. H.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N., Optical solitons in PT periodic potentials, Phys. Rev. Lett., 100, 3, Article 030402 pp. (2008)
[26] Konotop, V. V.; Yang, J.; Zezyulin, D. A., Nonlinear waves in PT-symmetric systems, Rev. Modern Phys., 88, 3, Article 035002 pp. (2016)
[27] Zhan, K.; Tian, H.; Li, X.; Xu, X.; Jiao, Z.; Jia, Y., Solitons in PT-symmetric periodic systems with the logarithmically saturable nonlinearity, Sci. Rep., 6, 1, 1-9 (2016)
[28] Chen, Y.; Yan, Z.; Mihalache, D., Stable flat-top solitons and peakons in the PT-symmetric \(\delta \)-signum potentials and nonlinear media, Chaos, 29, 8, Article 083108 pp. (2019) · Zbl 1428.35496
[29] Wang, L.; Malomed, B. A.; Yan, Z., Attraction centers and parity-time-symmetric delta-functional dipoles in critical and supercritical self-focusing media, Phys. Rev. E, 99, 5, Article 052206 pp. (2019)
[30] Zhong, M.; Chen, Y.; Yan, Z.; Tian, S. F., Formation, stability, and adiabatic excitation of peakons and double-hump solitons in parity-time-symmetric Dirac-\( \delta ( x )\)-Scarf-II optical potentials, Phys. Rev. E, 105, 1, Article 014204 pp. (2022)
[31] Chen, Y.; Song, J.; Li, X.; Yan, Z., Stability and modulation of optical peakons in self-focusing/defocusing Kerr nonlinear media with PT-\( \delta \)-hyperbolic-function potentials, Chaos, 32, 2, Article 023122 pp. (2022)
[32] Song, J.; Zhou, Z.; Weng, W.; Yan, Z., PT-symmetric peakon solutions in self-focusing/defocusing power-law nonlinear media: Stability, interactions and adiabatic excitations, Physica D, 435, Article 133266 pp. (2022) · Zbl 1490.35453
[33] Guo, A.; Salamo, G. J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Christodoulides, D. N., Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett., 103, 9, Article 093902 pp. (2009)
[34] Rüter, C. E.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Segev, M.; Kip, D., Observation of parity-time symmetry in optics, Nat. Phys., 6, 3, 192-195 (2010)
[35] Regensburger, A.; Bersch, C.; Miri, M. A.; Onishchukov, G.; Christodoulides, D. N.; Peschel, U., Parity-time synthetic photonic lattices, Nature, 488, 7410, 167-171 (2012)
[36] Peng, B.; Özdemir, Ş. K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G. L.; Yang, L., Parity-time-symmetric whispering-gallery microcavities, Nat. Phys., 10, 5, 394-398 (2014)
[37] Hodaei, H.; Hassan, A. U.; Wittek, S.; Garcia-Gracia, H.; El-Ganainy, R.; Christodoulides, D. N.; Khajavikhan, M., Enhanced sensitivity at higher-order exceptional points, Nature, 548, 7666, 187-191 (2017)
[38] Yang, J., Can parity-time-symmetric potentials support families of non-parity-time-symmetric solitons?, Stud. Appl. Math., 132, 4, 332-353 (2014) · Zbl 1298.35208
[39] Yang, J., Necessity of PT symmetry for soliton families in one-dimensional complex potentials, Phys. Lett. A, 378, 4, 367 (2014) · Zbl 1396.35060
[40] Yang, J., Symmetry breaking of solitons in two-dimensional complex potentials, Phys. Rev. E, 91, 2, Article 023201 pp. (2015)
[41] Yang, J., Symmetry breaking with opposite stability between bifurcated asymmetric solitons in parity-time-symmetric potentials, Opt. Lett., 44, 11, 2641 (2019)
[42] Yang, J., Symmetry breaking of solitons in two-dimensional complex potentials, Phys. Rev. E, 91, 2, Article 023201 pp. (2015)
[43] Li, P.; Mihalache, D., Symmetry breaking of solitons in PT-symmetric potentials with competing cubic-quintic nonlinearity, Proc. Rom. Acad. A, 19, 1, 61 (2018)
[44] Li, P.; Dai, C.; Li, R.; Gao, Y., Symmetric and asymmetric solitons supported by a PT-symmetric potential with saturable nonlinearity: bifurcation, stability and dynamics, Opt. Express, 26, 6, 6949-6961 (2018)
[45] Dong, L.; Huang, C.; Qi, W., Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials, Nonlinear Dyn., 98, 3, 1701-1708 (2019) · Zbl 1430.37089
[46] Chen, H.; Hu, S., The asymmetric solitons in two-dimensional parity-time-symmetric potentials, Phys. Lett. A, 380, 1-2, 162-165 (2016)
[47] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 4-6, 298-305 (2000) · Zbl 0948.81595
[48] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 5, Article 056108 pp. (2002)
[49] Stickler, B. A., Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal, Phys. Rev. E, 88, 1, Article 012120 pp. (2013)
[50] Longhi, S., Fractional Schödinger equation in optics, Opt. Lett., 40, 6, 1117-1120 (2015)
[51] Zhang, Y.; Liu, X.; Belć, M. R.; Zhong, W.; Zhang, Y.; Xiao, M., Propagation dynamics of a light beam in a fractional Schrödinger equation, Phys. Rev. Lett., 115, 18, Article 180403 pp. (2015)
[52] Zhang, L.; Li, C.; Zhong, H.; Xu, C.; Lei, D.; Li, Y.; Fan, D., Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes, Opt. Express, 24, 13, 14406-14418 (2016)
[53] Huang, X.; Shi, X.; Deng, Z.; Bai, Y.; Fu, X., Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation, Opt. Express, 25, 26, 32560-32569 (2017)
[54] Malomed, B. A., Optical solitons and vortices in fractional media: a mini-review of recent results, Photonics, 8, 9, 353 (2021)
[55] Zhong, W. P.; Belić, M. R.; Malomed, B. A.; Zhang, Y.; Huang, T., Spatiotemporal accessible solitons in fractional dimensions, Phys. Rev. E, 94, 1, Article 012216 pp. (2016)
[56] Zhong, W. P.; Belić, M. R.; Zhang, Y., Fraction-dimensional accessible solitons in a parity-time symmetric potential, Ann. Physics, 530, 2, Article 1700311 pp. (2018) · Zbl 07754500
[57] Huang, C.; Dong, L., Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice, Opt. Lett., 41, 24, 5636-5639 (2016)
[58] Zeng, L.; Zeng, J., One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential, Nonlinear Dynam., 98, 2, 985-995 (2019)
[59] Yao, X.; Liu, X., Off-site and on-site vortex solitons in space-fractional photonic lattices, Opt. Lett., 43, 23, 5749-5752 (2018)
[60] Li, P.; Malomed, B. A.; Mihalache, D., Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity, Chaos Solitons Fractals, 137, Article 109783 pp. (2020) · Zbl 1489.35301
[61] Mihalache, D., Localized structures in optical and matter-wave media: a selection of recent studies, Romanian Rep. Phys., 73, 403 (2021)
[62] Li, P.; Dai, C., Double loops and pitchfork symmetry breaking bifurcations of optical solitons in nonlinear fractional Schrödinger equation with competing cubic-quintic nonlinearities, Ann. Physics, 532, 8, Article 2000048 pp. (2020) · Zbl 07764334
[63] Li, P.; Malomed, B. A.; Mihalache, D., Symmetry breaking of spatial Kerr solitons in fractional dimension, Chaos Solitons Fractals, 132, Article 109602 pp. (2020) · Zbl 1434.35008
[64] Li, P.; Li, R.; Dai, C., Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction, Opt. Express, 29, 3, 3193-3210 (2021)
[65] Li, P.; Malomed, B. A.; Mihalache, D., Symmetry-breaking bifurcations and ghost states in the fractional nonlinear Schrödinger equation with a PT-symmetric potential, Opt. Lett., 46, 13, 3267-3270 (2021)
[66] Zhong, M.; Wang, L.; Li, P.; Yan, Z., Spontaneous symmetry breaking and ghost states supported by the fractional nonlinear Schrödinger equation with focusing saturable nonlinearity and PT-symmetric potential, Chaos, 33, Article 013106 pp. (2023)
[67] Zhong, M.; Yan, Z., Spontaneous symmetry breaking and ghost states in two-dimensional Kerr media with fractional diffraction and non-Hermitian potential (2023), to appear
[68] Kivshar, Y. S.; Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[69] Duo, S.; Zhang, Y., Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71, 11, 2257-2271 (2016) · Zbl 1443.65242
[70] Li, K.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Rüter, C. E.; Kip, D., Revisiting the-symmetric trimer: bifurcations, ghost states and associated dynamics, J. Phys. A Math. Theor., 46, 37, Article 375304 pp. (2013) · Zbl 1275.81096
[71] Cartarius, H.; Haag, D.; Dast, D.; Wunner, G., Nonlinear Schrödinger equation for a-symmetric delta-function double well, J. Phys. A Math. Theor., 45, 44, Article 444008 pp. (2012) · Zbl 1282.35325
[72] Susanto, H.; Kusdiantara, R.; Li, N.; Kirikchi, O. B.; Adzkiya, D.; Putri, E. R.M.; Asfihani, T., Snakes and ghosts in a parity-time-symmetric chain of dimers, Phys. Rev. E, 97, 6, Article 062204 pp. (2018)
[73] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM · Zbl 1234.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.