×

Linear, quasi-monotonic and hybrid grid-characteristic schemes for hyperbolic equations. (English) Zbl 1515.74075

Summary: Nowadays, the grid-characteristic method is gaining popularity for linear hyperbolic systems of equations. This method is commonly used for the simulation of the wave propagation process in deformable media. This problem requires specific properties of the used numerical method: a high approximation order and a monotonicity. One of the robust monotonicity criteria is the grid-characteristic one, proposed by A. S. Kholodov [U.S.S.R. Comput. Math. Math. Phys. 20, No. 6, 234–253 (1980; Zbl 0477.65065); translation from Zh. Vychisl. Mat. Mat. Fiz. 20, 1601–1620 (1980)]. This work is devoted to the adaptation of this approach for broaden spatial stencils. On the seven-point stencil, the fifth-order linear scheme and quasi-monotonic schemes were constructed. Their behavior was evaluated on the linear transport equation with the constant coefficient. Based on the problem with the initial condition of a complex form, the obtained numerical solution was compared with the other ones. The achieved approximation order was calculated based on the numerical experiment results. The detailed analysis was used to choose the scheme with the best behavior.

MSC:

74S20 Finite difference methods applied to problems in solid mechanics

Citations:

Zbl 0477.65065
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauch. Kniga, Novosibirsk, 1998; Springer, New York, 2003). doi:10.1007/978-1-4757-5117-8 · Zbl 1031.74004
[2] Nishikawa, H.; Kitamura, K., Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers, J. Comput. Phys., 227, 2560-2581 (2008) · Zbl 1388.76185 · doi:10.1016/j.jcp.2007.11.003
[3] Petrov, I. B.; Vasyukov, A. V.; Beklemysheva, K. A.; Onuchin, E. S.; Tovarnova, N. A., On numerical modeling of fiber deformation and destruction under impact load, Dokl. Math., 105, 207-211 (2022) · Zbl 1498.74069 · doi:10.1134/S1064562422030061
[4] H. Ali, H. Soleimani, N. Yahya, M. K. Baig, and A. Rostami, ‘‘Finite element method for modelling of two phase fluid flow in porous media,’’ J. Phys.: Conf. Ser. 1123, 012002 (2018). doi:10.1088/1742-6596/1123/1/012002
[5] M. Tavelli, S. Chiocchetti, E. Romenski, A.-A. Gabriel, and M. Dumbser, ‘‘Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure,’’ J. Comput. Phys. 422, 109758 (2020). · Zbl 07508383
[6] V. Golubev, A. Shevchenko, N. Khokhlov, I. Petrov, and M. Malovichko, ‘‘Compact grid-characteristic scheme for the acoustic system with the piece-wise constant coefficients,’’ Int. J. Appl. Mech. 14, 2250002 (2022). doi:10.1142/S1758825122500028
[7] Nikitin, I.; Golubev, V., Higher order schemes for problems of dynamics of layered media with nonlinear contact conditions, Smart Innov. Syst. Technol., 274, 273-287 (2022) · doi:10.1007/978-981-16-8926-0_19
[8] Golubev, V. I.; Muratov, M. V.; Guseva, E. K.; Konov, D. S.; Petrov, I. B., Thermodynamic and mechanical problems of ice formations: Numerical simulation results, Lobachevskii J. Math., 43, 970-979 (2022) · Zbl 1497.65122 · doi:10.1134/S1995080222070113
[9] Godunov, S. K., A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204
[10] Berthon, C., Stability of the MUSCL schemes for the Euler equations, Commun. Math. Sci., 3, 133-157 (2005) · Zbl 1161.65344 · doi:10.4310/CMS.2005.v3.n2.a3
[11] C. W. Shu, B. Cockburn, C. Johnson, and E. Tadmor, ‘‘Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,’’ in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lect. Notes Math. 1697, 325-432 (1998). doi:10.1007/BFb0096355
[12] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 135, 260-278 (1997) · Zbl 0890.65096 · doi:10.1006/jcph.1997.5713
[13] Titarev, V. A.; Toro, E. F., ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17, 609-618 (2002) · Zbl 1024.76028 · doi:10.1023/A:1015126814947
[14] Kholodov, A. S.; Kholodov, Ya. A., Monotonicity criteria for difference schemes designed for hyperbolic equations, Comput. Math. Math. Phys., 46, 1560-1588 (2006) · Zbl 07811665 · doi:10.1134/S0965542506090089
[15] Kholodov, A. S., The construction of difference schemes of increased order of accuracy for equations of hyperbolic type, USSR Comput. Math. Math. Phys., 20, 234-253 (1980) · Zbl 0477.65065 · doi:10.1016/0041-5553(80)90017-8
[16] Golubev, V. I.; Guseva, E. K.; Petrov, I. B., Application of quasi-monotonic schemes in seismic arctic problems, Smart Innov. Syst. Technol., 274, 289-307 (2022) · doi:10.1007/978-981-16-8926-0_20
[17] Petrov, I. B.; Golubev, V. I.; Guseva, E. K., Hybrid grid-characteristic schemes for arctic seismic problems, Dokl. Math., 104, 374-379 (2021) · Zbl 07503282 · doi:10.31857/S2686954321060138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.