Lee, Dae-Woong; Staecker, P. Christopher Digital topological groups. (English) Zbl 1542.22004 Topology Appl. 338, Article ID 108644, 20 p. (2023). Summary: In this article, we develop the basic theory of digital topological groups. The basic definitions directly lead to two separate types, based on the details of the continuity required of the group multiplication. We define NP\({}_1\)- and NP\({}_2\)-digital topological groups, and investigate their properties and algebraic structure. The NP\({}_2\)-type is very restrictive, and we give a complete classification of NP\({}_2\)-digital topological groups. We also give many examples of NP\({}_1\)-digital topological groups. We define digital topological group homomorphisms, and describe the digital counterpart of the first isomorphism theorem. Cited in 1 Document MSC: 22A30 Other topological algebraic systems and their representations 22A10 Analysis on general topological groups 68U03 Computational aspects of digital topology 05C10 Planar graphs; geometric and topological aspects of graph theory 54H11 Topological groups (topological aspects) 54H30 Applications of general topology to computer science (e.g., digital topology, image processing) Keywords:digital image; normal product adjacency; NP\({}_i\)-digital topological group; digital simple closed curve; regular graph; vertex-transitive graph; Cayley graph; digital topological group homomorphism; digital open map; digital H-space × Cite Format Result Cite Review PDF Full Text: DOI arXiv OA License References: [1] Barcelo, H.; Laubenbacher, R., Perspectives on A-homotopy theory and its applications, Discrete Math., 298, 1-3, 39-61 (2005) · Zbl 1082.37050 [2] Bondy, J. A.; Murty, U. S.R., Graph Theory, Graduate Texts in Mathematics, vol. 244 (2008), Springer: Springer New York · Zbl 1134.05001 [3] Boxer, L., Digitally continuous functions, Pattern Recognit. Lett., 15, 833-839 (1994) · Zbl 0822.68119 [4] Boxer, L., A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10, 51-62 (1999) · Zbl 0946.68151 [5] Boxer, L., Properties of digital homotopy, J. Math. Imaging Vis., 22, 19-26 (2005) · Zbl 1383.68090 [6] Boxer, L., Homotopy properties of sphere-like digital images, J. Math. Imaging Vis., 24, 167-175 (2006) · Zbl 1478.94012 [7] Boxer, L., Generalized normal product adjacency in digital topology, Appl. Gen. Topol., 18, 2, 401-427 (2017) · Zbl 1377.54053 [8] Boxer, L.; Staecker, P. C., Connectivity preserving multivalued functions in digital topology, J. Math. Imaging Vis., 55, 370-377 (2016) · Zbl 1345.68260 [9] Chartrand, G.; Zhang, P., Introduction to Graph Theory (2005), McGraw-Hill Science: McGraw-Hill Science New York · Zbl 1096.05001 [10] Dochtermann, A., Hom complexes and homotopy theory in the category of graphs, Eur. J. Comb., 30, 2, 490-509 (2009) · Zbl 1167.05017 [11] Ege, O.; Karaca, I., Digital H-spaces, (3rd International Symposium on Computing in Science and Engineering. 3rd International Symposium on Computing in Science and Engineering, ISCSE 2013 (2013)), 133-138 [12] Han, S., Digitally topological groups, Electron. Res. Arch., 30, 6, 2356-2384 (2022) · Zbl 1517.54010 [13] Hungerford, T. W., Algebra, Graduate Texts in Math, vol. 73 (1974), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin · Zbl 0293.12001 [14] Husain, T., Introduction to Topological Groups (1966), W. B. Saunders Co.: W. B. Saunders Co. Philadelphia, Pa.-London · Zbl 0136.29402 [15] Karaca, I.; İs, M., Certain topological methods for computing digital topological complexity (2021) · Zbl 1499.68357 [16] Lee, D.-W., Near-rings on digital Hopf groups, Appl. Algebra Eng. Commun. Comput., 29, 3, 261-282 (2018) · Zbl 1395.16049 [17] Lee, D.-W., Digital H-spaces and actions in the pointed digital homotopy category, Appl. Algebra Eng. Commun. Comput., 31, 2, 149-169 (2020) · Zbl 1434.68592 [18] Lupton, G.; Oprea, J.; Scoville, N., The digital Hopf construction, Topol. Appl., 326, Article 108405 pp. (2023), 19 pp. · Zbl 1514.55013 [19] Montgomery, D.; Zippin, L., Topological Transformation Groups, Interscience Tracts in Pure and Applied Mathematics, Track 1 (1955), Interscience Publ. Inc.: Interscience Publ. Inc. New York · JFM 66.0959.03 [20] Rosenfeld, A., Continuous functions on digital pictures, Pattern Recognit. Lett., 4, 177-184 (1986) · Zbl 0633.68122 [21] Shamir, R.; Sharan, R.; Tsur, D., Cluster graph modification problems, Discrete Appl. Math., 144, 1-2, 173-182 (2004) · Zbl 1068.68107 [22] Staecker, P. C., Digital homotopy relations and digital homology theories, Appl. Gen. Topol., 22, 2, 223-250 (2021) · Zbl 1505.55019 [23] West, D. B., Introduction to Graph Theory (1996), Prentice Hall, Inc.: Prentice Hall, Inc. Upper Saddle River, NJ · Zbl 0845.05001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.