Xie, Shaoting; Yin, Jiandong Equicontinuity and sensitivity of group actions. (English) Zbl 07762268 Chin. Ann. Math., Ser. B 44, No. 4, 501-516 (2023). Summary: Let \((X, G)\) be a dynamical system \((G\)-system for short), that is, \(X\) is a topological space and \(G\) is an infinite topological group continuously acting on \(X\). In the paper, the authors introduce the concepts of Hausdorff sensitivity, Hausdorff equicontinuity and topological equicontinuity for \(G\)-systems and prove that a minimal \(G\)-system \((X, G)\) is either topologically equicontinuous or Hausdorff sensitive under the assumption that \(X\) is a \(T_3\)-space and they provide a classification of transitive dynamical systems in terms of equicontinuity pairs. In particular, under the condition that \(X\) is a Hausdorff uniform space, they give a dichotomy theorem between Hausdorff sensitivity and Hausdorff equicontinuity for \(G\)-systems admitting one transitive point. MSC: 37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.) 37B02 Dynamics in general topological spaces 37B20 Notions of recurrence and recurrent behavior in topological dynamical systems 22F05 General theory of group and pseudogroup actions 54C35 Function spaces in general topology 54C05 Continuous maps Keywords:Hausdorff sensitivity; Hausdorff equicontinuity; topological equicontinuity; even continuity PDFBibTeX XMLCite \textit{S. Xie} and \textit{J. Yin}, Chin. Ann. Math., Ser. B 44, No. 4, 501--516 (2023; Zbl 07762268) Full Text: DOI References: [1] Akin, E.; Auslander, J.; Berg, K., When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, 5, 3, 25-40 (1996) · Zbl 0861.54034 · doi:10.1515/9783110889383.25 [2] Auslander, J., Minimal Flows and Their Extensions (1988), Amsterdam: Elsevier, Amsterdam · Zbl 0654.54027 [3] Auslander, J.; Greschonig, G.; Nagar, A., Reflections on equicontinuity, Proc. Amer. Math. Soc., 142, 9, 3129-3137 (2014) · Zbl 1327.37005 · doi:10.1090/S0002-9939-2014-12034-X [4] Auslander, J.; Yorke, J., Interval maps, factors of maps, and chaos, Tohoku Math. J., 32, 2, 177-188 (1980) · Zbl 0448.54040 · doi:10.2748/tmj/1178229634 [5] Cairns, G.; Kolganova, A.; Nielsen, A., Topological transitivity and mixing notions for group actions, Rocky Mountain J. Math., 37, 2, 371-397 (2007) · Zbl 1208.37005 · doi:10.1216/rmjm/1181068757 [6] Corbacho, E.; Tarieladze, V.; Vidal, R., Equicontinuity and quasi-uniformities, Georgian Math. J., 11, 4, 681-690 (2004) · Zbl 1069.54014 · doi:10.1515/GMJ.2004.681 [7] Corbacho, E.; Tarieladze, V.; Vidal, R., Even continuity and topological equicontinuity in topologized semigroups, Topology Appl., 156, 7, 1289-1297 (2009) · Zbl 1165.54016 · doi:10.1016/j.topol.2008.12.027 [8] Devaney, R. L., An Introduction to Chaotic Dynamical Systems (2003), Boulder, CO: Westview Press, Boulder, CO · Zbl 1025.37001 [9] Engelking, R., General Topology (1989), Berlin: Heldermann Verlag, Berlin · Zbl 0684.54001 [10] Good, C.; Leek, R.; Mitchell, J., Equicontinuity, transitivity and sensitivity, the Auslander-Yorke dichotomy revisied, Discrete Contin. Dyn. Syst., 40, 4, 2441-2474 (2020) · Zbl 1441.37010 · doi:10.3934/dcds.2020121 [11] Good, C.; Macías, S., What is topological about topological dynamics?, Discrete Contin. Dyn. Syst., 38, 3, 1007-1031 (2018) · Zbl 1406.54021 · doi:10.3934/dcds.2018043 [12] Huang, W.; Khilko, D.; Kolyada, S.; Zhang, G., Dynamical compactness and sensitivity, J. Differential Equations, 260, 9, 6800-6827 (2016) · Zbl 1354.37021 · doi:10.1016/j.jde.2016.01.011 [13] Huang, W.; Khilko, D., Finite intersection property and dynamical compactness, J. Dynam. Differential Equations, 30, 3, 1221-1245 (2018) · Zbl 1401.37018 · doi:10.1007/s10884-017-9600-8 [14] Huang, W.; Kolyada, S.; Zhang, G. H., Analogues of Auslander-Yorke theorems for multi-sensitivity, Ergodic Theory Dyna. Systems, 38, 2, 651-665 (2016) · Zbl 1390.37016 · doi:10.1017/etds.2016.48 [15] James, I., Topologies and Uniformities (1999), London: Springer-Verlag, London · Zbl 0917.54001 · doi:10.1007/978-1-4471-3994-2 [16] Kelley, J. L., General Topology (1955), New York, Heidelberg, Berlin: Springer-Verlag, New York, Heidelberg, Berlin · Zbl 0066.16604 [17] Li, J.; Tu, S. M., Density-equicontinuity and density-sensitivity, Acta Math Sin. (Engl. Ser.), 37, 2, 345-361 (2021) · Zbl 1466.37010 · doi:10.1007/s10114-021-0211-2 [18] Li, J.; Tu, S. M.; Ye, X. D., Mean equicontinuity and mean sensitivity, Ergodic Theory and Dyna. Systems, 35, 8, 2587-2612 (2015) · Zbl 1356.37016 · doi:10.1017/etds.2014.41 [19] Li, J.; Ye, X. D., Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32, 1, 83-114 (2016) · Zbl 1335.54039 · doi:10.1007/s10114-015-4574-0 [20] Li, J.; Ye, X. D.; Yu, T., Equicontinuity and sensitivity in mean forms, J. Dynam. Differential Equations, 34, 1, 133-154 (2022) · Zbl 1496.37008 · doi:10.1007/s10884-021-09945-9 [21] Liu, K.; Zhou, X. M., Auslander-Yorke type dichotomy theorems for stronger versions of r-sensitivity, Proc. Amer. Math. Soc., 147, 6, 2609-2617 (2019) · Zbl 1417.37061 · doi:10.1090/proc/14435 [22] Moothathu, T., Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20, 9, 2115-2126 (2007) · Zbl 1132.54023 · doi:10.1088/0951-7715/20/9/006 [23] Noble, N., Ascoli theorems and the exponential map, Trans. Amer. Math. Soc., 143, 393-411 (1969) · Zbl 0229.54017 · doi:10.1090/S0002-9947-1969-0248727-6 [24] Oprocha, P.; Zhang, G. H., Topological Aspects of Dynamics of Pairs, Tuples and Sets, 665-709 (2014), Paris: Atlantis Press, Paris · Zbl 1305.54002 [25] Polo, F., Sensitive dependence on initial conditions and chaotic group actions, Proc. Amer. Math. Soc., 138, 8, 2815-2826 (2010) · Zbl 1200.28017 · doi:10.1090/S0002-9939-10-10286-X [26] Poppe, H., Convergence of evenly continuous nets in general function spaces, Real Anal. Exchange, 18, 2, 459-464 (1992) · Zbl 0780.54015 · doi:10.2307/44152291 [27] Royden, H. L., Real Analysis, 3nd ed., Prentice-Hall, Inc., 2006. · Zbl 0704.26006 [28] Wang, H. Y., Equicontinuity, shadowing and distality in general topological spaces, Czechoslovak Math. J., 70, 3, 711-726 (2020) · Zbl 1513.37003 · doi:10.21136/CMJ.2020.0488-18 [29] Wang, H. Y.; Zhong, Y. H., A note on sensitivity in uniform spaces, J. Dyn. Control Syst., 24, 4, 625-633 (2018) · Zbl 1408.37020 · doi:10.1007/s10883-017-9375-6 [30] Willard, S., General Topology (1970), Reading, Mass.: Addison-Wesley, Reading, Mass. · Zbl 0205.26601 [31] Zhang, G. H., Relativization of complexity and sensitivity, Ergodic Theory and Dyna. Systems, 27, 4, 1349-1371 (2007) · Zbl 1136.37012 · doi:10.1017/S0143385706000988 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.