Márquez, Edgar Countable networks on Malykhin’s maximal topological group. (English) Zbl 07779893 Appl. Gen. Topol. 24, No. 2, 239-246 (2023). The author presents a solution to the following problem. Does every countable and non-discrete topological (abelian) group have a countable network with infinite elements? In fact, the author shows that no maximal topological space allows for a countable network with infinite elements. As a result, he answers the question in the negative. The article also focuses on Malykhin’s maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group \(G\). Reviewer: Zhangyong Cai (Nanning) MSC: 22A05 Structure of general topological groups 54H11 Topological groups (topological aspects) Keywords:countable network; resolvable; linear; \(P\)-point; \(P\)-space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. V. Arhangel’skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. I, Atlantis Press and World Scientific, Paris-Amsterdam, 2008. https://doi.org/10.2991/978-94-91216-35-0 · Zbl 1323.22001 · doi:10.2991/978-94-91216-35-0 [2] E. K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, Eds.), Elsevier Science Publ. B. V. (1984), 111-167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9 · Zbl 0546.00022 · doi:10.1016/B978-0-444-86580-9.50006-9 [3] D. H. Fremlin, Consequences of Martin’s Axiom, Cambridge University Press, Cambridge, 1984. https://doi.org/10.1017/CBO9780511896972 · Zbl 0551.03033 · doi:10.1017/CBO9780511896972 [4] E. Márquez and M. Tkachenko, D-independent topological groups, Topology Appl. 300 (2021), 107761. https://doi.org/10.1016/j.topol.2021.107761 · Zbl 1497.22001 · doi:10.1016/j.topol.2021.107761 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.