Osipov, Alexander V.; Kazachenko, Konstantin Joint continuity in semitopological monoids and semilattices. (English) Zbl 1540.22005 Semigroup Forum 107, No. 3, 718-731 (2023). In this article, the authors study separately continuous actions of semitopological monoids on pseudocompact spaces. They generalize the Lawson central theorem by proving that if \(\pi:S\times X\to X\) is a separately continuous quasicontinuous action of a pseudocompact right topological monoid \(S\) on a pseudocompact space \(X\), then \(\pi\) is continuous at each point of \(\{1\}\times X\). It is proved that if \(X\) is a pseudocompact space and \(Y\) is a weak \(q_D\)-space, then \((X,Y)\) is a Grothendieck pair. The authors also study subgroups of semitopological semigroups and the continuity of the multiplication in semitopological locally convex semilattices. Reviewer: Saak S. Gabriyelyan (Beer-Sheva) Cited in 1 ReviewCited in 1 Document MSC: 22A15 Structure of topological semigroups 22A26 Topological semilattices, lattices and applications 54H15 Transformation groups and semigroups (topological aspects) Keywords:semitopological monoid; pseudocompact space; Grothendieck pair; topological group; quasicontinuous function; separately continuous function; semitopological semilattice PDFBibTeX XMLCite \textit{A. V. Osipov} and \textit{K. Kazachenko}, Semigroup Forum 107, No. 3, 718--731 (2023; Zbl 1540.22005) Full Text: DOI arXiv References: [1] Al’perin, M.; Osipov, AV, Generalization of the Grothendieck’s theorem, Topol. Appl., 338 (2023) · Zbl 1532.54011 · doi:10.1016/j.topol.2023.108648 [2] Arhangel’skii, AV, Topological Function Spaces (1992), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0758.46026 · doi:10.1007/978-94-011-2598-7 [3] Arhangel’skii, AV; Choban, MM, Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis, Topol. Proc., 3, 33-607 (2011) · Zbl 1213.54051 [4] Arhangel’skii, AV; Ponomarev, VI, Fundamentals of General Topology: Problems and Exercises, Mathematics and Its Applications (2001), Dordrecht: Springer, Dordrecht [5] Arhangel’skii, A.; Tkachenko, M., Topological Groups and Related Structures: An Introduction to Topological Algebra (2008), Paris: Atlantis Press, Paris · Zbl 1323.22001 · doi:10.2991/978-94-91216-35-0 [6] Asanov, MO; Velichko, NV, Compact subsets in \(C_p(X)\), Commentationes Mathematicae Universitatis Carolinae, 22, 2, 255-266 (1981) · Zbl 0491.54011 [7] Banakh, T.; Bardyla, S., Characterizing chain-compact and chain-finite topological semilattices, Semigroup Forum, 98, 234-250 (2019) · Zbl 1416.54017 · doi:10.1007/s00233-018-9921-x [8] Bourbaki, N., General Topology: Chapters 1-4 (1995), Berlin, Heidelberg: Springer, Berlin, Heidelberg · doi:10.1007/978-3-642-61701-0 [9] Choban, M.; Kenderov, P.; Moors, W., Pseudo-compact semi-topological groups, Union Bulg. Math., 41, 1, 53-60 (2012) [10] Engelking, R., General Topology (1989), Berlin: Heldermann, Berlin · Zbl 0684.54001 [11] Hahn, H., Reelle Funktionen: Teil 1, Punktfunktionen, Mathematik und ihre Anwendungen in Monographien und Lehrbüchern (1932), Leipzig: Akademische Verlagsgesellschaft, Leipzig · Zbl 0005.38903 [12] Kazachenko, K.; Osipov, AV, Various types of completeness in topologized semilattices, Semigroup Forum, 104, 358-375 (2022) · Zbl 1518.22002 · doi:10.1007/s00233-022-10259-5 [13] Kenderov, PS; Kortezov, IS; Moors, WB, Topological games and topological groups, Topol. Appl., 109, 157-165 (2001) · Zbl 0976.22003 · doi:10.1016/S0166-8641(99)00152-2 [14] Korovin, AV, Continuous actions of pseudocompact groups and axioms of topological group, Commentationes Mathematicae Universitatis Carolinae, 33, 2, 335-343 (1992) · Zbl 0786.22002 [15] Lawson, JD, Joint continuity in semitopological semigroups, Illinois J. Math., 18, 2, 275-285 (1974) · Zbl 0278.22002 · doi:10.1215/ijm/1256051229 [16] Lawson, JD, Additional notes on continuity in semitopological semigroups, Semigroup Forum, 12, 265-280 (1976) · Zbl 0327.22003 · doi:10.1007/BF02195932 [17] Moors, WB, Semitopological groups, Bouziad spaces and topological groups, Topol. Appl., 160, 15, 2038-2048 (2013) · Zbl 1285.22007 · doi:10.1016/j.topol.2013.08.008 [18] Namioka, I., Separate continuity and joint continuity, Pacific J. Math., 51, 2, 515-531 (1974) · Zbl 0294.54010 · doi:10.2140/pjm.1974.51.515 [19] Neubrunn, T., Quasi-continuity, Real Anal. Exch., 14, 259-306 (1988) · Zbl 0679.26003 · doi:10.2307/44151947 [20] Reznichenko, E., Extension of mappings from the product of pseudocompact spaces, Topol. Appl., 322 (2022) · Zbl 1529.54005 · doi:10.1016/j.topol.2022.108329 [21] Reznichenko, E., Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topol. Appl., 59, 3, 233-244 (1994) · Zbl 0835.22001 · doi:10.1016/0166-8641(94)90021-3 [22] Reznichenko, E.; Tkachenko, M., All countable subsets of pseudocompact quasitopological Korovin groups are closed, discrete and \(C^*\)-embedded, Topol. Appl., 341 (2024) · Zbl 1531.54030 · doi:10.1016/j.topol.2023.108728 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.