×

A countably cellular topological group all of whose countable subsets are closed need not be \(\mathbb{R}\)-factorizable. (English) Zbl 07790587

The author constructs a Hausdorff topological group \(G\) such that \(\aleph_1\) is a precalibre of \(G\), and hence \(G\) has countable cellularity, all countable subsets of \(G\) are closed and \(C\)-embedded in \(G\), but \(G\) is not \(\mathbb{R}\)-factorizable. This gives negative answer on Problem 8.6.3 from the book of A. Arhangel’skii and M. Tkachenko [Topological groups and related structures. Hackensack, NJ: World Scientific; Paris: Atlantis Press (2008; Zbl 1323.22001)].

MSC:

22A05 Structure of general topological groups
54H11 Topological groups (topological aspects)
54D30 Compactness
54G20 Counterexamples in general topology

Citations:

Zbl 1323.22001
Full Text: DOI

References:

[1] Arhangel’skiĭ A. V.; Tkachenko M. G., Topological Groups and Related Structures, Atlantis Stud. Math., 1, Atlantis Press, Paris World Scientific Publishing Co., Hackensack, 2008 · Zbl 1323.22001
[2] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 · Zbl 0684.54001
[3] Noble N.; Ulmer M., Factoring functions on Cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329-339 · Zbl 0207.21302 · doi:10.1090/S0002-9947-1972-0288721-2
[4] Reznichenko E. A.; Sipacheva O. V., The free topological group on the Sorgenfrey line is not \(\mathbb{R} \)-factorizable, Topology Appl. 160 (2013), no. 11, 1184-1187 · Zbl 1311.54026 · doi:10.1016/j.topol.2013.04.010
[5] Sipacheva O. V., Free Boolean topological groups, Axioms 4 (2015), no. 4, 492-517 · Zbl 1372.54028 · doi:10.3390/axioms4040492
[6] Tkachenko M. G., Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22 (1981), no. 4, 819-841 · Zbl 0494.54007
[7] Tkachenko M. G., Cellularity in quotient spaces of topological groups, Forum Math. 31 (2019), no. 2, 351-359 · Zbl 1415.43003 · doi:10.1515/forum-2018-0195
[8] Xie L.-H.; Yan P.-F., The continuous \(d\)-open homomorphism images and subgroups of \(\mathbb{R} \)-factorizable paratopological groups, Topology Appl. 300 (2021), Paper No. 107627, 7 pages · Zbl 1479.54064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.