Wang, Wenjuan; Jia, Yan The optimal upper and lower bounds for the 3D generalized Navier-Stokes equations. (Chinese. English summary) Zbl 07801530 Acta Math. Appl. Sin. 46, No. 3, 440-456 (2023). Summary: This paper concerns the decay rates of weak solutions to the 3D generalized Navier-Stokes equations with fractional Laplacian dissipation \(\Lambda^{2 \alpha} u\). It is proved that if the weak solution \(u(x,t)\) to the 3D generalized Navier-Stokes equations lies in the regular class \[ \nabla u \in L^p (0,\infty; B_{q,\infty}^0 (R^3)),\; \frac{2 \alpha}{p} + \frac{3}{q} = 2 \alpha,\; \frac{3}{ 2 \alpha} < q < \infty,\; \frac{1}{2} \leq \alpha \leq 1, \] the large initial perturbation \(w_0 \in L^2 (\mathbb{R}^3)\) satisfies \[ \int_{\mathcal{S}^2} |\hat{w_0}(r\omega)|^2 \mathrm{d} \omega = C r^{2\alpha \gamma -3} + o (r^{2\alpha \gamma -3}) (r \to 0), \frac{10}{\alpha} -8 \leq \gamma \leq \frac{25}{2 \alpha} -10, \] then every weak solution \(v(x,t)\) of the perturbed system converges algebraically to \(u(x,t)\) with the optimal upper and lower bounds \[C_1 (1+t)^{- \frac{\gamma}{2}} \leq \|v(t) - u(t)\|_{L^2} \leq C_2 (1+t)^{-\frac{\gamma}{2}},\] for large \(t>1\). MSC: 35Q35 PDEs in connection with fluid mechanics 76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids Keywords:generalized Navier-Stokes equations; optimal decay rates; Besov space × Cite Format Result Cite Review PDF Full Text: Link References: [1] Lions J L. Quelques Méthods de Résolution des Problémes aux Limites NonlinWaires. Dunod, Paris, 1969 · Zbl 0189.40603 [2] Wu J H. Generalized MHD equations. Journal of Differential Equations, 2003, 195: 284-312 · Zbl 1057.35040 [3] Wu J H. The generalized incompressible Navier-Stokes equations in Besov spaces. Dynamics of Partial Differential Equations, 2004, 1: 381-400 · Zbl 1075.35043 [4] Wu H W, Fan J S. Weak-strong uniqueness for the generalized Navier-Stokes equations. Applied Mathematics Letters, 2012, 25: 423-428 · Zbl 1239.35118 [5] Chen Z M. Analytic semigroup approach to generalized Navier-Stokes flows in Besov spaces. Journal of Mathematical Fluid Mechanics, 2017, 19: 709-724 · Zbl 1386.35017 [6] Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Communications on Pure and Applied Mathematics, 1982, 35: 771-831 · Zbl 0509.35067 [7] Dong B Q, Jia Y. Stability behaviors of Leray weak solutions to the three-dimensional Navier-Stokes equations. Nonlinear Analysis-real World Applications, 2016, 30: 41-58 · Zbl 1342.35214 [8] Dong B Q, Zhang Z F. On the weak-strong uniqueness of Koch-Tataru’s solution for the Navier-Stokes equations. Journal of Differential Equations, 2014, 256: 2406-2422 · Zbl 1285.35064 [9] Teman R. The Navier-Stokes Equations. North-Holland, Amsterdam, 1977 · Zbl 0383.35057 [10] Leray J. Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Mathematica, 1934, 63: 193-248 · JFM 60.0726.05 [11] Schonbek M E. L 2 decay for weak solutions of the Navier-Stokes equations. Archive for Rational Mechanics and Analysis, 1985, 88: 209-222 · Zbl 0602.76031 [12] Schonbek M E. Large time behavior of solutions to the Navier-Stokes equations. Communications in Partial Differential Equations, 1986, 11: 733-763 · Zbl 0607.35071 [13] Ponce G, Racke R, Sideris T C, Titi E S. Global stability of large solutions to the 3D Navier-Stokes equations. Communications in Mathematical Physics, 1994, 159: 329-341 · Zbl 0795.35082 [14] Secchi P. L 2 stability for weak solutions of the Navier-Stokes equations in R 3 . Indiana University Mathematics Journal, 1987, 36: 685-691 · Zbl 0635.35076 [15] Zhou Y. Asymptotic stability to the 3D Navier-Stokes equations. Communications in Partial Differ-ential Equations, 2005, 30: 323-333 · Zbl 1142.35548 [16] Jia Y, Xie Q Q, Wang W J. The optimal upper and lower bounds of convergence rates for the 3D Navier-Stokes equations under large initial perturbation. Journal of Mathematical Analysis and Applications, 2018, 459: 437-452 · Zbl 1457.35029 [17] Dong B Q, Chen Z M. On the weak-strong uniqueness of the dissipative surface quasi-geostrophic equation. Nonlinearity, 2012, 25: 1513-1524 · Zbl 1241.35158 [18] Chemin J Y. Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and its Applica-tions, London, 1998 · Zbl 0927.76002 [19] Bony J M. Calcul symbolique et propagation des singularités pour leséquations aux dérivées partielles non linéaires. Annales Scientifiques de I’ École Normale Supérieure, 1981, 14: 209-246 · Zbl 0495.35024 [20] Oliver M, Titi E S. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in R n . Journal of Functional Analysis, 2000, 172: 1-18 · Zbl 0960.35081 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.