×

Statistical solutions and piecewise Liouville theorem four impulsive discrete nonlinear Schrödinger-Boussinesq equations. (Chinese. English summary) Zbl 07801753

Summary: In this paper, we study the initial value problem and the existence of statistical solutions for impulsive discrete nonlinear Schrödinger-Boussinesq equations. The authors first prove the global well-posedness of the impulsive problem, then prove that the process generated by the solutions operator possesses pullback attractors and a family of invariant Borel probability measures. Then we give the definition of statistical solutions for the impulsive problem and prove its existence. The results show that the statistical solution of the impulsive problem satisfies satisfies merely the Liouville type theorem piecewise.

MSC:

35B41 Attractors
34D35 Stability of manifolds of solutions to ordinary differential equations
76F20 Dynamical systems approach to turbulence
39A12 Discrete version of topics in analysis

References:

[1] Guo B, Chen F. The global solution for the initial boundary value problem of system of Schrödinger-Boussinesq type equations in three dimensions. Acta Math. Appl. Sinica., 1996, 6(1): 223-233
[2] Guo B. Global solutions of equation interacting with Bq-type self-consistent field. Acta. Math. Sinica., 1983, 26(3): 295-306 · Zbl 0554.35102
[3] Li Y, Chen Q. Finite dimensional global attractor for dissipative Schrödinger-Boussinesq equations. Math. Anal. Appl., 1997, 205: 107-132 · Zbl 0958.35129
[4] S ¢, ë â /, U ². š g £ Ñ ÑSchröinger-Boussinesq • § | ; -Ø ¡ • 3 5. ê AE c r, 2014, 35(A): 307-322.
[5] Li C, Zhao C, Wang W. Existence of Compact Kernel Sections for Non-autonomous Dissipative Schrödinger-Boussinesq Equations. Chinese Annals of Mathematics, 2014, 35(A): 307-322) · Zbl 1313.35027
[6] Yang X, Zhao C, Cao J. Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations. Appl. Math. Comput., 2013, 219: 8508-8524 · Zbl 1291.39019
[7] Chekroun M, Glatt-Holtz N, Invariant measures for dissipative dynamical systems: abstract results and applications. Commun. Math. Phys., 2012, 316: 723-761 · Zbl 1336.37060
[8] Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cam-bridge University Press, 2001 · Zbl 0994.35002
[9] Lukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discret. Contin. Dyn. Syst., 2014, 34: 4211-4222 · Zbl 1351.37076
[10] ëâ/ . Ladyzhenskaya 6NåAE• §| .£áÚf †ØCÿÝ. êAEAE , 2018, 61(4): 1-12 (Zhao C, et al. Pullback Attractor and Invariant Measure for the Equations of Ladyzhenskaya Fluid. Acta Mathematica Sinica, 2018, 61(4): 1-12)
[11] Foias C, Prodi G. Sur les solutions statistiques des équations de Naiver-Stokes. Ann. Mat. Pura Appl., 1976, 111: 307-330 · Zbl 0344.76015
[12] Vishik M, Fursikov A. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian. Math. J., 1978, 19: 710-729 · Zbl 0412.35078
[13] Lukaszewicz G. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete Contin. Dyn. Syst.-B., 2008, 9: 643-659 · Zbl 1191.35067
[14] Bronzi A, Mondaini C, Rosa R. Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J. Math. Anal., 2014, 46: 1893-1921 · Zbl 1298.76066
[15] Bronzi A, Mondaini C, Rosa R. Abstract framework for the theory of statistical solutions. J. Differ. Equ., 2016, 260: 8428-8484 · Zbl 1334.76038
[16] Zhao C, Li Y, Caraballo T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J. Differ. Equ., 2020, 269: 467-494 · Zbl 1436.35050
[17] Zhao C, Li Y, Lukaszewicz G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z. Angew. Math. Phys., 2020, 71: 1-24 · Zbl 1467.35267
[18] Zhao C, Caraballo T. Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J. Differ. Equ., 2019, 266: 7205-7229 · Zbl 1411.35051
[19] Chow S N. Lattice Dynamical Systems. Lecture Notes in Mathematics, 2003
[20] Chow S N, Paret J M. Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans. Circuits. Syst., 1995, 42: 752-756
[21] Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solidstate lasers. J. Phys. Rev. A., 1993, 47: 4287-4296
[22] Chow S N, Mallet-Paret J, Van Vleck E S. Pattern fomation and spatial chaos in spatially discrete evolution equations. Rand. Comp. Dyn., 1996, 4: 109-178 · Zbl 0883.58020
[23] Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. Dyn. Differ. Equ., 2012, 24: 601-631 · Zbl 1267.34020
[24] Zhao C, Jiang H, Caraballo T. Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices. Appl. Math. Comput., 2021, 404: 126103 · Zbl 1510.35158
[25] Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic solutions and applications. New York: John Wiley, 1993 · Zbl 0815.34001
[26] Carvalho A N, Langa J A, Robinson J C. Attractors for infinite-dimensional non-autonomous dynam-ical systems. New York: Springer, 2013 · Zbl 1263.37002
[27] Zhao C, Xue G, Lukaszewicz G. Pullback attractor and invariant measures for the discrete Klein-Gordon-Schrödinger equatios. Discrete. Contin. Dyn. Syst.-B., 2018, 23: 4021-4044 · Zbl 1415.35059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.