×

A kind of integral operator on normal weight Dirichlet type space in the unit ball. (Chinese. English summary) Zbl 07802325

Summary: Let \(\mu\) be a normal function on \([0,1)\) and Bn be the unit ball in \(n\) dimensions complex space \(\mathbb{C}^n\). Suppose that \(\psi\) is a holomorphic function on Bn and \(\varphi\) is a holomorphic self-map of Bn. The authors consider a kind of integral operator as follows: \[ T_{\varphi, \psi} (f)(z) = \int^1_0 f[\varphi (tz)] R\psi (tz) \frac{\mathrm{d}t}{t}, \quad z\in B_n. \] The authors mainly characterize the boundedness and compactness of \(T_{\varphi, \psi}\) on the normal weight Dirichlet type space \(\mathcal{D}^p_\mu (B_n) (0 < p \leqslant 1)\). At the same time, the authors discuss the same problem from the normal weight Bergman space \(\mathcal{A}^p_\mu (B_n)\) to \(\mathcal{D}^p_\mu (B_n) (p > 0)\) by measures on Carleson square and Bergman ball. Necessary and sufficient conditions are given for all the cases discussed.

MSC:

47B38 Linear operators on function spaces (general)
32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
Full Text: DOI

References:

[1] Siskakis A G. Composition semigroups and the Cesàro operator on H p [J]. J London Math Soc, 1987, 36(2):153-164. · Zbl 0634.47038
[2] Miao J. The Cesàro operator is bounded on H p for 0 < p < 1 [J]. Proc Amer Math Soc, 1992, 116:1077-1079. · Zbl 0787.47029
[3] Xiao J. Cesàro operators on Hardy, BMOA and Bloch spaces [J]. Arch Math, 1997, 68:398-406. · Zbl 0870.30026
[4] Shi J H, Ren G B. Boundedness of the Cesàro operator on mixed norm spaces [J]. Proc Amer Math Soc, 1998, 126:3553-3560. · Zbl 0905.47019
[5] Aleman A, Siskakis A G. An integral operator on H p [J]. Complex Variables, 1995, 28:149-158. · Zbl 0837.30024
[6] Aleman A, Siskakis A G. Integration operators on Bergman spaces [J]. Indiana Uni Math J, 1997, 46:337-356. · Zbl 0951.47039
[7] Hu Z J. Extended Cesàro operators on the Bloch space in the ball of C n [J]. Acta Math Sci, 2003, 23B(4):561-566. · Zbl 1044.47023
[8] Hu Z J. Extended Cesàro operators on mixed norm spaces [J]. Proc Amer Math Soc, 2003, 131(7):2171-2179. · Zbl 1054.47023
[9] ×À ¤ C n ¢ Dirichlet ¸¦ Bloch ¸¦Ø £ Cesàro AE [J]. Ï ÎÍ A Ì, 2005, 26(1):139-150.
[10] Stević S, Ueki S. Integral-Type operator acting between weighted-type spaces on the unit ball [J]. Appl Math Comput, 2009, 215(7):2464-2471. · Zbl 1197.47061
[11] Stević S. On some integral-type operator between a general space and Bloch type spaces [J]. Appl Math Comput, 2011, 218(6):2600-2618. · Zbl 1245.45011
[12] Zhang X J, Chu Y M. Compact Cesàro operator from spaces H(p, q, u) to H(p, q, v) [J]. Acta Math Appl Sin (English Series), 2006, 22(3):437-442. · Zbl 1119.47034
[13] Li S X, Stević S. Products of Volterra type operator and composition operator from H ∞ and Bloch spaces to the Zygmund space [J]. J Math Anal Appl, 2008, 345:40-52. · Zbl 1145.47022
[14] Li S X, Stević S. On an integral-type operator from ω-Bloch spaces to µ-Zygmund spaces [J]. Appl Math Comput, 2010, 215:4385-4391. · Zbl 1205.30049
[15] Fang Z S, Zhou Z H. Extended Cesàro operators from generally weighted Bloch spaces to Zygmund space [J]. J Math Anal Appl, 2009, 359:499-507. · Zbl 1170.32003
[16] Xu S, Zhang X J, Li S L. Composition Cesàro operator on the normal weight Zygmund space in high dimensions [J]. Chin Ann Math Ser B, 2021, 42(1):69-84. · Zbl 1464.32007
[17] Cowen C, MacCluer B. Composition operators on spaces of analytic functions [M]. Boca Raton: CRC Press, 1995. · Zbl 0873.47017
[18] Liu X S, Lou Z J. Weighted composition operators on weighted Dirichlet spaces [J]. Acta Math Sci, 2013, 33B(4):1119-1126. · Zbl 1299.47047
[19] Cao Y X, Kumar S, Zhou Z H. Order bounded weighted composition operators mapping into the Dirichlet type space [J]. Chin Ann Math Ser B, 2016, 37(4):585-594. · Zbl 1362.47008
[20] Zhang X J, Zhou M, Chen H X. Composition operators on the normal weight Dirichlet type space in the unit disc [J]. Front of Math in China, 2022, 17(4):545-552. · Zbl 1515.30131
[21] Zhang X J, Xi L H, Fan H X, et al. Atomic decomposition of µ-Bergman space in C n [J].
[22] Acta Math Sci, 2014, 34B(3):779-789. · Zbl 1313.32015
[23] Rudin W. Function theory in the unit ball of C n [M].
[24] Zhang X J, Yi K Y, Xiao J B. Composition operators on µ-Bergman spaces in the unit ball [J]. Chin J Conte Math, 2009, 30(2):185-194.
[25] Zhu K H. Spaces of holomorphic functions in the unit ball [M]. New York: Springer-Verlag, 2005. · Zbl 1067.32005
[26] A Kind of Integral Operator on Normal Weight Dirichlet Type Space in the Unit Ball GUO Yuting 1 ZHANG Xuejun 2
[27] Abstract Let µ be a normal function on [0, 1) and B n be the unit ball in n dimensions complex space C n . Suppose that ψ is a holomorphic function on B n and ϕ is a holomorphic
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.