Han, Jing; Shen, Jiaji A note on the unicity of holomorphic curves in \(\mathbb{P}^2 (\mathbb{C})\). (Chinese. English summary) Zbl 07802329 Chin. Ann. Math., Ser. A 44, No. 3, 315-322 (2023). Summary: In this paper, the unicity of holomorphic curves in \(\mathbb{P}^2 (\mathbb{C})\) intersecting hyperplanes in subgeneral position is discussed. Let \(f_1\), \(f_2, \cdots, f_\lambda\) be linearly non-degenerate holomorphic curves in \(\mathbb{P}^2 (\mathbb{C})\), and \(H_1\), \(H_1, \cdots, H_q\) be hyperplanes in \(\mathbb{P}^2 (\mathbb{C})\) located in \(m\)-subgeneral position such that \(A_j :=f_1^{-1} (H_j) = \cdots =f_\lambda^{-1} (H_j)\) for \(j=1,\cdots,q\), and \(A_i \cap A_j = \emptyset\) for \((i \neq j)\). Assume that there exists an integer \(l\) with \(2 \leqslant l \leqslant \lambda\) such that \(f_{j_1} (z) \wedge f_{j_2} (z) \wedge \cdots \wedge f_{j_l} (z) = 0 (z\in \bigcup\limits^q_{j=1} A_j)\) for any \(l\) indices \(1 \leqslant j_1 < j_2 < \cdots < j_l \leqslant \lambda\). Then, when \(q > \frac{2\lambda}{\lambda -l+1} + \frac{3}{2}m\), \(f_1 \wedge \cdots \wedge f_\lambda \equiv 0\). The key technique is an improved second main theorem with inequality \(\| (q -\frac{3m}{2}) T_{f_t} (r) \leqslant \sum\limits^q_{j=1} N^2_{(f_t, H_j)} (r,0) + o(T_{f_t} (r))\) for \(t=1,\cdots, \lambda\). MSC: 32H30 Value distribution theory in higher dimensions 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory Keywords:holomorphic curve; hyperplane; second main theorem; uniqueness problem; subgeneral position × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Nevanlinna R. Einige eindeutigkeitssätze in der theorie der meromorphen funktionen [J]. · JFM 52.0323.03 [2] German Acta Math, 1926, 48(3-4):367-391. [3] Fujimoto H. The uniqueness problem of meromorphic maps into the complex projective space [J]. Nagoya Math J, 1975, 58:1-23. · Zbl 0313.32005 [4] Fujimoto H. A uniqueness theorem of algebraically non-degenerate meromorphic maps into P N (C) [J]. Nagoya Math J, 1976, 64:117-147. · Zbl 0329.32013 [5] Smiley L M. Geometric conditions for unicity of holomorphic curves, value distribu-tion theory and its applications [C]//Contemp Math, 25, New York: Amer Math Soc, 1983:149-154. · Zbl 0571.32002 [6] Ji S Y. Uniqueness problem without multiplicities in value distribution theory [J]. Pa-cific J Math, 1988, 135(2):323-348. · Zbl 0629.32022 [7] Stoll W. On the propagation of dependences [J]. Pacific J Math, 1989, 39(2):311-337. · Zbl 0683.32017 [8] Fujimoto H. Uniqueness problem with truncated multiplicities in value distribution theory [J]. Nagoya Math J, 1998, 152:131-152. · Zbl 0937.32010 [9] Thai D D, Quang S D. Uniqueness problem with truncated multiplicities of meromor-phic mappings in several complex variables [J]. Internat J Math, 2006, 17(10):1223-1257. · Zbl 1117.32014 [10] Dethloff G, Van Tan T. Uniqueness theorems for meromorphic mappings with few hyperplanes [J]. Bull Sci Math, 2009, 133(5):501-514. · Zbl 1170.32004 [11] Chen Z H, Yan Q M. Uniqueness theorem of meromorphic mappings into P N (C) sharing 2N +3 hyperplanes regardless of multiplicities [J]. Internat J Math, 2009, 20(6):717-726. · Zbl 1186.32006 [12] Quang S D. Unicity of meromorphic mappings sharing few hyperplanes [J]. Ann Polon Math, 2011, 102(3):255-270. · Zbl 1250.32017 [13] Quang S D. A finiteness theorem for meromorphic mappings sharing few hyperplanes [J]. Kodai Math J, 2012, 35(3):463-484. · Zbl 1257.32016 [14] Cao H Z, Cao T B. Uniqueness problem for meromorphic mappings in several complex variables with few hyperplanes [J]. Acta Math Sin (Engl Ser), 2015, 31(8):1327-1338. · Zbl 1320.32021 [15] Thoan P D, Nhung N T. Algebraic dependence for three meromorphic mappings from complete Kähler manifolds into projective spaces [J]. Bull Iranian Math Soc, 2020, 46(4):917-942. · Zbl 1447.32027 [16] Ru M. Nevanlinna theory and its relation to Diophantine approximation [M]. · Zbl 0998.30030 [17] Cartan H. Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees [J]. Mathematica (Cluj), 1933, 7:80-103. [18] Nochka E I. On the theory of meromorphic curves [J]. Russian Dokl Akad Nauk SSSR, 1983, 269(3):547-552. [19] Noguchi J. A note on entire pseudo-holomorphic curves and the proof of Cartan-Nochka’s theorem [J]. Kodai Math J, 2005, 28(2):336-346. · Zbl 1081.32017 [20] Vojta P. Diophantine approximation and Nevanlinna theory [C]//Arithmetic geometry, Lecture Notes in Math, 2009, Berlin: Springer-Verlag, 2011:111-224. · Zbl 1258.11076 [21] Ji Q C, Yan Q M, Yu G S. Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position [J]. Math Ann, 2019, 373(3-4):1457-1483. · Zbl 1444.32017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.