×

Positive solutions to a class of Kirchhoff-type problems with Hardy-Sobolev critical exponent in \(\mathbb{R}^N\). (Chinese. English summary) Zbl 07802330

Summary: In this article, the following class of Kirchhoff-type problems with Hardy-Sobolev critical exponent is considered \[ \begin{cases} - \left[ a+b \left(\int_{\mathbb{R}^N} |\nabla u|^2\mathrm{d}x \right)^m \right] \Delta u= \frac{|u|^{(s)-2} u}{|x|^s} + \lambda h(x), \quad x\in \mathbb{R}^N,\\ u\in D^{1,2} (\mathbb{R}^N), \end{cases} \] where \(N \geqslant 3\), \(a\), \(\lambda \geqslant 0\), \(b\), \(m>0\), \(0 \leqslant s < 2\), \(h\in L \frac{2^*}{2^*-1} (\mathbb{R}^N)\) is nonzero and nonnegative. When \(\lambda = 0\), some existence results are obtained by some analysis techniques. When \(\lambda > 0\), by using the variational method, the existence of positive solutions is obtained. Particularly, when \(0<m < \frac{2-s}{N-2}\), at least two positive solutions are obtained.

MSC:

35B09 Positive solutions to PDEs
35J15 Second-order elliptic equations
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Refernce(1):
[2] Liu J, Liao J F, Tang C L. Positive solutions for Kirchhoff-type equations with critical exponent in RN [J]. J Math Anal Appl, 2015, 429:1153-1172.
[2] 丁凌, 汪继秀, 肖氏武. 全空间上具有临界指数的Kirchhoff类方程无穷多个正解的存在性[J]. 南昌大学学报(自然科学版), 2017, 41(5):414-417.
[3] 丁凌, 汪继秀, 张丹丹. 全空间上具有临界指数的Kirchhoff类方程两个正解的存在性[J]. 四川大学学报(自然科学版), 2018, 55(3):457-461.
[4] 刘选状, 吴行平. 两类带有临界指数的Kirchhoff型方程的解的存在性和多重性 [D]. 重庆: 西南大学, 2015.
[5] 朱同亮, 吴行平. 两类带有临界指数的Kirchhoff型方程的解的存在性和多重性 [D]. 重庆: 西南大学, 2016.
[6] Lei C Y, Suo H M, Chu C M, et al. On ground state solutions for a Kirchhoff type equation with critical growth [J]. Comput Math Appl, 2016, 72(3):729-740.
[7] Ke X F, Liu J, Liao J F. Positive solutions for a critical p-Laplacian problem with a Kirchhoff term [J]. Comput Math Appl, 2019, 77(9):729-740.
[8] Guo Z J, Zhang X G. Schr¨odinger-Kirchhoff equation involving double critical nonlinearities [J]. J Math Anal Appl, 2019, 471(1-2):358-377.
[9] Zeng L, Tang C L. Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent [J]. Ann Polon Math, 2016, 117(1):163-180.
[10] Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents [J]. Trans Amer Math Soc, 2000, 352(12):5703-5743.
[11] Kang D S, Peng S J. Existence of solutions for elliptic problems with critical SobolevHardy exponents [J]. Israel J Mathematics, 2004, 143:281-297.
[12] Br′ezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals [J]. Proc Amer Math Soc, 1983, 88:486-490.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.