×

Dividend payments under the risk model with stochastic premium and constant interest. (Chinese. English summary) Zbl 07809950

Summary: In this paper, we consider a risk model where the aggregate premium process is a compound Poisson process. Moreover, there are a constant interest and a constant dividend barrier strategy in this model. The integro-differential equations for the expectation and the \(n\)th moment and the moment generating function of the cumulative discounted dividend payments until ruin are obtained. Meanwhile, the explicit expressions for the expectation and the \(n\)th moment and the moment generating function of the cumulative dividend payments until ruin are given when the individual stochastic premium amount and claim amount are exponentially distributed. Finally, numerical example is also given to illustrate the effect of the related parameters on the expected value of the cumulative discounted dividend payments until ruin.

MSC:

91G05 Actuarial mathematics
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] DE FINETTI B. Su un’impostazione alternativa della teoria collettiva del rischio [C] // Transactions of the XVth International Congress of Actuaries, Vol. 2. New York: Mallon, 1957: 433-443.
[2] LIN X S, WILLMOT G E, DREKIC S. The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function [J]. Insurance Math Econom, 2003, 33(3): 551-566. · Zbl 1103.91369
[3] DICKSON D C M, WATERS H R. Some optimal dividends problems [J]. Astin Bull, 2004, 34(1): 49-74. · Zbl 1097.91040
[4] YUEN K C, WANG G J, LI W K. The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier [J]. Insurance Math Econom, 2007, 40(1): 104-112. · Zbl 1273.91456
[5] LIU W Q, ZHAN M Y. Optimal dividend and capital injection strategies in the compound Poisson model with random interest rates [J]. Chinese J Appl Probab Statist, 2020, 36(6): 627-655. · Zbl 1474.62368
[6] XIE J Y, ZHANG Z M. Statistical estimation for some dividend problems under the compound Poisson risk model [J]. Insurance Math Econom, 2020, 95: 101-115. · Zbl 1452.91284
[7] AVANZI B, GERBER H U, SHIU E S W. Optimal dividends in the dual model [J]. Insurance Math Econom, 2007, 41(1): 111-123. · Zbl 1131.91026
[8] AVANZI B, GERBER H U. Optimal dividends in the dual model with diffusion [J]. · Zbl 1274.91463
[9] Astin Bull, 2008, 38(2): 653-667. · Zbl 1274.91463
[10] 袁海丽, 胡亦钧. 带利率和常数红利边界的对偶风险模型的研究 [J]. 数学学报, 2012, 55(1): 131-140.
[11] 谢奕, 王伟. 交易费用影响下带扰动对偶模型的最优分红与注资策略 [J]. 天津师范大学学报 (自然科学 版), 2022, 42(2): 1-5+18.
[12] 邓丽, 郑华, 彭小飞. 随机利率下带注资的对偶模型最优分红问题 [J]. 华南师范大学学报 (自然科学版), 2020, 52(2): 107-113.
[13] BOIKOV, A V. The Cramér-Lundberg model with stochastic premium process [J]. Theory Probab Appl, 2003, 47(3): 489-493. · Zbl 1033.60093
[14] TEMNOV G. Risk process with random income [J]. J Math Sci, 2004, 123(1): 3780-3794. · Zbl 1065.91040
[15] XIANG M Y, WEI J Q. Optimal dividend strategy under the risk model with stochastic premium [J]. Chinese J Appl Probab Statist, 2011, 27(1): 39-47. · Zbl 1240.91076
[16] 赵金娥. 常红利边界下带干扰的双复合 Poisson 风险模型 [J]. 辽宁工程技术大学学报 (自然科学版), 2014, 33(5): 691-695.
[17] 赵金娥, 李明. 双复合 Poisson 风险模型总红利现值的研究 [J]. 西南大学学报 (自然科学版), 2015, 37(1): 104-109. Dividend Payments under the Risk Model with Stochastic and Constant Interest
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.