Megrelishvili, Michael Topological group actions by group automorphisms and Banach representations. (English) Zbl 07812392 Forum Math. 36, No. 2, 327-338 (2024). Let a group \(G\) act on a topological space \(X.\) A representation of the \(G\) -space \(X\) on a Banach space \(V\) (and its dual \(V^{\ast }\)) is a continuous map \(\alpha :X\rightarrow V^{\ast }\) that is weak-star continuous bounded \(G \)-equivariant, with respect to some linear representation \(h:G\rightarrow Iso(V)\), where \(Iso(V)\) is the linear isometric group. A typical example is that \(X\) is compact and \(V=C(X,\mathbb{R}),\) the Banach space of continuous real functions on \(X.\) It is a less known fact (see [J. Adámek (ed.) and S. MacLane (ed.), Categorical topology and its relation to analysis, algebra and combinatorics. International conference CAT-TOP, Prague, Czechoslovakia, August 22-27, 1988. London: World Scientific. 220–237 (1989; Zbl 0849.18001); M. G. Megrelishvili, N. Z. J. Math. 25, No. 1, 59–72 (1996; Zbl 0848.22003)]) that the \(G\) -space \(G\) (conjugation action) is Banach representable (i.e. \(\alpha \) is topological embedding) for every topological group \(G\). In the article under review, the author considers Banach representability when \(V\) is additionally Hilbert, reflexive, Asplund, or Rosenthal.Some examples and facts are discussed. For example, the conjugation action of \(\mathrm{SL}_{2}(\mathbb{R})\) on itself is not representable on reflexive Banach spaces; The conjugation action of \(\mathrm{SL}_{n}(\mathbb{R}),n\geq 4,\) on itself, the linear action of \(\mathrm{GL}_{n}(\mathbb{R}),n\geq 2,\) on \(\mathbb{R}^{n},\) are not representable on Asplund Banach spaces; On the other hand, the latter action is representable on a Rosenthal Banach space. Reviewer: Shengkui Ye (Suzhou) Cited in 1 Document MSC: 20F29 Representations of groups as automorphism groups of algebraic systems Keywords:representation on Banach spaces; equivariant compactification Citations:Zbl 0849.18001; Zbl 0848.22003 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge University, Cambridge, 1996. · Zbl 0949.54052 [2] R. B. Brook, A construction of the greatest ambit, Math. Systems Theory 4 (1970), 243-248. · Zbl 0205.04301 [3] S. G. Dani and S. Raghavan, Orbits of Euclidean frames under discrete linear groups, Israel J. Math. 36 (1980), no. 3-4, 300-320. · Zbl 0457.28008 [4] J. de Vries, Can every Tychonoff G-space equivariantly be embedded in a compact Hausdorff G-space?, Math. Centrum 36, Amsterdam, 1975. · Zbl 0302.54037 [5] J. de Vries, On the existence of G-compactifications, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 3, 275-280. · Zbl 0378.54028 [6] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators with applications to topology, algebra and discrete mathematics, Math. Appl. 346, Kluwer Academic, Dordrecht, 1995. · Zbl 0853.18002 [7] R. Ellis, The enveloping semigroup of projective flows, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 635-660. · Zbl 0819.54028 [8] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups, Mat. Sb. 13(55) (1943), 301-316. · Zbl 0063.01566 [9] E. Glasner and M. Megrelishvili, Hereditarily non-sensitive dynamical systems and linear representations, Colloq. Math. 104 (2006), no. 2, 223-283. · Zbl 1094.54020 [10] E. Glasner and M. Megrelishvili, Representations of dynamical systems on Banach spaces not containing l_1, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6395-6424. · Zbl 1317.54013 [11] E. Glasner and M. Megrelishvili, Representations of dynamical systems on Banach spaces, Recent Progress in General Topology. III, Atlantis Press, Paris (2014), 399-470. · Zbl 1316.37001 [12] E. Glasner and M. Megrelishvili, More on tame dynamical systems, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math. 2213, Springer, Cham (2018), 351-392. · Zbl 1407.37011 [13] E. Glasner and M. Megrelishvili, Circular orders, ultra-homogeneous order structures, and their automorphism groups, Topology, Geometry, and Dynamics—V. A. Rokhlin-Memorial, Contemp. Math. 772, American Mathematical Society, Providence (2021), 133-154. · Zbl 1490.22004 [14] E. Glasner and M. Megrelishvili, Todorc̆ević’ trichotomy and a hierarchy in the class of tame dynamical systems, Trans. Amer. Math. Soc. 375 (2022), no. 7, 4513-4548. · Zbl 1503.37021 [15] E. Glasner, M. Megrelishvili and V. V. Uspenskij, On metrizable enveloping semigroups, Israel J. Math. 164 (2008), 317-332. · Zbl 1147.22003 [16] T. Ibarlucía, The dynamical hierarchy for Roelcke precompact Polish groups, Israel J. Math. 215 (2016), no. 2, 965-1009. · Zbl 1377.54044 [17] T. Ibarlucía and M. Megrelishvili, Maximal equivariant compactification of the Urysohn spaces and other metric structures, Adv. Math. 380 (2021), Paper No. 107599. · Zbl 1464.54018 [18] D. Kerr and H. Li, Independence in topological and C^*-dynamics, Math. Ann. 338 (2007), no. 4, 869-926. · Zbl 1131.46046 [19] A. Köhler, Enveloping semigroups for flows, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 179-191. · Zbl 0986.47027 [20] V. Lebedev, Tame semicascades and cascades generated by affine self-mappings of the d-torus, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4739-4742. · Zbl 1512.37015 [21] M. Megrelishvili, Equivariant completions and compact extensions, Soobshch. Akad. Nauk Gruzin. SSR 115 (1984), no. 1, 21-24. · Zbl 0567.54022 [22] M. Megrelishvili, Compactification and factorization in the category of G-spaces, Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Scientific, Singapore (1989), 220-237. [23] M. Megrelishvili, Free topological G-groups, New Zealand J. Math. 25 (1996), no. 1, 59-72. · Zbl 0848.22003 [24] M. Megrelishvili, Fragmentability and representations of flows, Tpology Proc. 27 (2003), no. 2, 497-544. · Zbl 1152.37310 [25] M. Megrelishvili, Topological transformation groups: Selected topics, Open Problems in Topology II, Elsevier Science, Amsterdam (2007), 423-438. [26] M. Megrelishvili, Reflexively representable but not Hilbert representable compact flows and semitopological semigroups, Colloq. Math. 110 (2008), no. 2, 383-407. · Zbl 1158.37008 [27] M. Megrelishvili, Topological Group Actions and Banach Representations, unpublished book, 2021. [28] M. Megrelishvili and M. Shlossberg, Free non-Archimedean topological groups, Comment. Math. Univ. Carolin. 54 (2013), no. 2, 273-312. · Zbl 1289.54105 [29] V. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), no. 2, 257-262. · Zbl 0891.22003 [30] V. Pestov, Topological groups: Where to from here?, Topology Proc. 24 (1999), 421-502. · Zbl 1026.22002 [31] V. Pestov, Dynamics of Infinite-Dimensional Groups. The Ramsey-Dvoretzky-Milman Phenomenon, Univ. Lecture Ser. 40, American Mathematical Society, Providence, 2006. · Zbl 1123.37003 [32] V. G. Pestov and V. V. Uspenskij, On epimorphisms in some categories of infinite-dimensional Lie groups, J. Lie Theory 31 (2021), no. 3, 871-884. · Zbl 1486.22016 [33] L. Ribes and P. Zalesskii, Profinite Groups, 2nd ed., Ergeb. Math. Grenzgeb. (3) 40, Springer, Berlin, 2010. · Zbl 1197.20022 [34] W. Roelcke and S. Dierolf, Uniform Structures on Topological Groups and Their Quotients, McGraw-Hill, New York, 1981. · Zbl 0489.22001 [35] H. P. Rosenthal, A characterization of Banach spaces containing l^1, Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. · Zbl 0297.46013 [36] V. Uspenskij, Compactifications of topological groups, Proceedings of the Ninth Prague Topological Symposium (2001). Topology Atlas, North Bay (2002), 331-346. · Zbl 0994.22003 [37] V. V. Uspenskij, The epimorphism problem for Hausdorff topological groups, Topology Appl. 57 (1994), no. 2-3, 287-294. · Zbl 0810.22002 [38] V. V. Uspenskij, The Roelcke compactification of groups of homeomorphisms, Topology Appl. 111 (2001), 195-205. · Zbl 0966.22001 [39] P. Wesolek, Elementary totally disconnected locally compact groups, Proc. Lond. Math. Soc. (3) 110 (2015), no. 6, 1387-1434. · Zbl 1326.22003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.