Wang, Haowu The classification of 2-reflective modular forms. (English) Zbl 07815178 J. Eur. Math. Soc. (JEMS) 26, No. 1, 111-151 (2024). Summary: The classification of reflective modular forms is an important problem in the theory of automorphic forms on orthogonal groups. In this paper, we develop an approach based on the theory of Jacobi forms to give a full classification of 2-reflective modular forms. We prove that there are only 3 lattices of signature \((2, n)\) having 2-reflective modular forms when \(n \geq 14\). We show that there are exactly 51 lattices of type \(2U \oplus L(-1)\) which admit 2-reflective modular forms and satisfy that \(L\) has 2-roots. We further determine all 2-reflective modular forms giving arithmetic hyperbolic 2-reflection groups. This is the first attempt to classify reflective modular forms on lattices of arbitrary level. Cited in 1 Document MSC: 11F03 Modular and automorphic functions 11F50 Jacobi forms 11F55 Other groups and their modular and automorphic forms (several variables) 17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 51F15 Reflection groups, reflection geometries 14J28 \(K3\) surfaces and Enriques surfaces Keywords:Jacobi forms; reflective modular forms; Borcherds products; hyperbolic reflective lattices; hyperbolic reflection groups × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Barnard, A. G.: The singular theta correspondence, Lorentzian lattices and Borcherds-Kac-Moody algebras. Ph.D. dissertation, University of California, Berkeley (2003) MR 2705173 [2] Belolipetsky, M.: Arithmetic hyperbolic reflection groups. Bull. Amer. Math. Soc. (N.S.) 53, 437-475 (2016) Zbl 1342.22017 MR 3501796 · Zbl 1342.22017 · doi:10.1090/bull/1530 [3] Bertola, M.: Frobenius manifold structure on orbit space of Jacobi groups. I. Differential Geom. Appl. 13, 19-41 (2000) Zbl 1033.11020 MR 1775220 · Zbl 1033.11020 · doi:10.1016/S0926-2245(00)00026-7 [4] Borcherds, R. E.: The monster Lie algebra. Adv. Math. 83, 30-47 (1990) Zbl 0734.17010 MR 1069386 · Zbl 0734.17010 · doi:10.1016/0001-8708(90)90067-W [5] Borcherds, R. E.: Automorphic forms on O sC2; · Zbl 0932.11028 · doi:10.1007/BF01241126 [6] R/ and infinite products. Invent. Math. 120, 161-213 (1995) Zbl 0932.11028 MR 1323986 · Zbl 0932.11028 · doi:10.1007/BF01241126 [7] Borcherds, R. E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491-562 (1998) Zbl 0919.11036 MR 1625724 · Zbl 0919.11036 · doi:10.1007/s002220050232 [8] Borcherds, R. E.: Reflection groups of Lorentzian lattices. Duke Math. J. 104, 319-366 (2000) Zbl 0970.11015 MR 1773561 · Zbl 0970.11015 · doi:10.1215/S0012-7094-00-10424-3 [9] Borcherds, R. E., Katzarkov, L., Pantev, T., Shepherd-Barron, N. I.: Families of K3 surfaces. J. Algebraic Geom. 7, 183-193 (1998) Zbl 0946.14021 MR 1620702 · Zbl 0946.14021 [10] Bourbaki, N.: Éléments de mathématique: Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Masson, Paris (1982) Zbl 0483.22001 MR 240238 · Zbl 0505.22006 [11] Bruinier, J. H.: Borcherds products on O(2, l) and Chern classes of Heegner divisors. Lecture Notes in Mathematics 1780, Springer, Berlin (2002) Zbl 1004.11021 MR 1903920 · Zbl 1004.11021 · doi:10.1007/b83278 [12] Bruinier, J. H.: On the converse theorem for Borcherds products. J. Algebra 397, 315-342 (2014) Zbl 1296.11046 MR 3119226 · Zbl 1296.11046 · doi:10.1016/j.jalgebra.2013.08.034 [13] Cléry, F., Gritsenko, V.: Modular forms of orthogonal type and Jacobi theta-series. Abh. Math. Sem. Univ. Hamburg 83, 187-217 (2013) Zbl 1355.11053 MR 3123592 · Zbl 1355.11053 · doi:10.1007/s12188-013-0080-4 [14] Conway, J. H., Sloane, N. J. A.: Sphere packings, lattices and groups. 3rd ed., Grundlehren der mathematischen Wissenschaften 290, Springer, New York (1999) Zbl 0915.52003 MR 1662447 · Zbl 0915.52003 · doi:10.1007/978-1-4757-6568-7 [15] Dittmann, M.: Reflective automorphic forms on lattices of squarefree level. Trans. Amer. Math. Soc. 372, 1333-1362 (2019) Zbl 1436.11038 MR 3968804 · Zbl 1436.11038 · doi:10.1090/tran/7620 [16] Dittmann, M., Hagemeier, H., Schwagenscheidt, M.: Automorphic products of singular weight for simple lattices. Math. Z. 279, 585-603 (2015) Zbl 1316.11031 MR 3299869 · Zbl 1316.11031 · doi:10.1007/s00209-014-1383-6 [17] Ebeling, W.: Lattices and codes. Rev. ed., Advanced Lectures in Mathematics, Vieweg, Braun-schweig (2002) Zbl 1030.11030 MR 1938666 · Zbl 1030.11030 · doi:10.1007/978-3-322-90014-2 [18] Eichler, M., Zagier, D.: The theory of Jacobi forms. Progress in Mathematics 55, Birkhäuser Boston, Boston, MA (1985) Zbl 0554.10018 MR 781735 · Zbl 0554.10018 · doi:10.1007/978-1-4684-9162-3 [19] Esselmann, F.: Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe. J. Number Theory 61, 103-144 (1996) Zbl 0871.11046 MR 1418323 · Zbl 0871.11046 · doi:10.1006/jnth.1996.0141 [20] Grandpierre, B.: Produits automorphes, classification des réseaux et théorie du codage. Ph.D. dissertation, Université de Lille 1 (2009) [21] Gritsenko, V. A.: Reflective modular forms and their applications. Uspekhi Mat. Nauk 73, no. 5, 53-122 (2018) (in Russian); English transl.: Russian Math. Surveys 73, 797-864 (2018) Zbl 1457.11043 MR 3859399 · Zbl 1457.11043 · doi:10.4213/rm9853 [22] Gritsenko, V. A., Hulek, K., Sankaran, G. K.: The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169, 519-567 (2007) Zbl 1128.14027 MR 2336040 · Zbl 1128.14027 · doi:10.1007/s00222-007-0054-1 [23] Gritsenko, V., Hulek, K.: Uniruledness of orthogonal modular varieties. J. Algebraic Geom. 23, 711-725 (2014) Zbl 1309.14030 MR 3263666 · Zbl 1309.14030 · doi:10.1090/S1056-3911-2014-00632-9 [24] Gritsenko, V., Hulek, K., Sankaran, G. K.: Moduli of K3 surfaces and irreducible symplectic manifolds. In: Handbook of moduli. Vol. I, Advanced Lectures in Mathematics 24, Interna-tional Press, Somerville, MA, 459-526 (2013) Zbl 1322.14004 MR 3184170 · Zbl 1322.14004 [25] Gritsenko, V. A., Nikulin, V. V.: Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras. Amer. J. Math. 119, 181-224 (1997) Zbl 0914.11020 MR 1428063 · Zbl 0914.11020 · doi:10.1353/ajm.1997.0002 [26] Gritsenko, V. A., Nikulin, V. V.: Automorphic forms and Lorentzian Kac-Moody algebras. I. Internat. J. Math. 9, 153-199 (1998) Zbl 0935.11015 MR 1616925 · Zbl 0935.11015 · doi:10.1142/S0129167X98000105 [27] Gritsenko, V. A., Nikulin, V. V.: Automorphic forms and Lorentzian Kac-Moody algebras. II. Internat. J. Math. 9, 201-275 (1998) Zbl 0935.11016 MR 1616929 · Zbl 0935.11016 · doi:10.1142/S0129167X98000117 [28] Gritsenko, V. A., Nikulin, V. V.: On the classification of Lorentzian Kac-Moody algebras. Uspekhi Mat. Nauk 57, no. 5, 79-138 (2002) (in Russian); English transl.: Russian Math. Surveys 57, 921-979 (2002) Zbl 1057.17018 MR 1992083 · Zbl 1057.17018 · doi:10.1070/RM2002v057n05ABEH000553 [29] Gritsenko, V., Nikulin, V. V.: Examples of lattice-polarized K3 surfaces with automorphic discriminant, and Lorentzian Kac-Moody algebras. Trans. Moscow Math. Soc. 78, 75-83 (2017) Zbl 1402.14042 MR 3738078 · Zbl 1402.14042 · doi:10.1090/mosc/265 [30] Gritsenko, V., Nikulin, V. V.: Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections. Proc. London Math. Soc. (3) 116, 485-533 (2018) Zbl 1432.17027 MR 3772615 · Zbl 1432.17027 · doi:10.1112/plms.12084 [31] Gritsenko, V., Skoruppa, N. P., Zagier, D.: Theta blocks. arXiv:1907.00188 (2019) [32] Gritsenko, V. A., Wang, H.: Conjecture on first-order theta-blocks. Uspekhi Mat. Nauk 72, no. 5, 191-192 (2017) (in Russian); English transl.: Russian Math. Surveys 72, 968-970 (2017) Zbl 1470.11111 MR 3716519 · Zbl 1470.11111 · doi:10.4213/rm9791 [33] Gritsenko, V. A., Wang, H.: Weight 3 antisymmetric paramodular forms. Mat. Sb. 210, no. 1, 43-66 (2019) (in Russian); English transl.: Sb. Math. 210, 1702-1723 (2019) Zbl 1432.11045 MR 4036807 · Zbl 1432.11045 · doi:10.4213/sm9241 [34] Gritsenko, V., Wang, H.: Theta block conjecture for paramodular forms of weight 2. Proc. Amer. Math. Soc. 148, 1863-1878 (2020) Zbl 1464.14046 MR 4078073 · Zbl 1464.14046 · doi:10.1090/proc/14876 [35] Looijenga, E.: Compactifications defined by arrangements. II. Locally symmetric varieties of type IV. Duke Math. J. 119, 527-588 (2003) Zbl 1079.14045 MR 2003125 · Zbl 1079.14045 · doi:10.1215/S0012-7094-03-11933-X [36] Ma, S.: Finiteness of 2-reflective lattices of signature .2; n/. Amer. J. Math. 139, 513-524 (2017) Zbl 1375.11049 MR 3636638 · Zbl 1375.11049 · doi:10.1353/ajm.2017.0013 [37] Ma, S.: On the Kodaira dimension of orthogonal modular varieties. Invent. Math. 212, 859-911 (2018) Zbl 1428.14040 MR 3802299 · Zbl 1428.14040 · doi:10.1007/s00222-017-0781-x [38] Ma, S.: Quasi-pullback of Borcherds products. Bull. London Math. Soc. 51, 1061-1078 (2019) Zbl 1456.11083 MR 4041012 · Zbl 1456.11083 · doi:10.1112/blms.12287 [39] Nikulin, V. V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43, 111-177, 238 (1979) (in Russian); English transl.: Math. USSR Izv. 14, 103-167 (1980) Zbl 0427.10014 MR 525944 · doi:10.1070/im1980v014n01abeh001060 [40] Nikulin, V. V.: Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections. Algebro-geometric applications. In: Current problems in mathe-matics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 3-114 (1981) (in Russian); English transl.: J. Soviet Math. 22, 1401-1476 (1983) MR 633160 [41] Nikulin, V. V.: K3 surfaces with a finite group of automorphisms and a Picard group of rank three. Trudy Mat. Inst. Steklov. 165, 119-142 (1984) (in Russian); English transl.: Proc. Steklov Inst. Math. 165, 131-155 (1985) Zbl 0577.10019 MR 752938 · Zbl 0577.10019 [42] Nikulin, V. V.: A remark on discriminants for moduli of K3 surfaces as sets of zeros of auto-morphic forms. J. Math Sci. 81, 2738-2743 (1996) Zbl 0883.14018 MR 1420226 · Zbl 0883.14018 · doi:10.1007/BF02362338 [43] Opitz, S., Schwagenscheidt, M.: Holomorphic Borcherds products of singular weight for sim-ple lattices of arbitrary level. Proc. Amer. Math. Soc. 147, 4639-4653 (2019) Zbl 1470.11084 MR 4011501 · Zbl 1470.11084 · doi:10.1090/proc/14650 [44] Scheithauer, N. R.: Generalized Kac-Moody algebras, automorphic forms and Conway’s group. I. Adv. Math. 183, 240-270 (2004) Zbl 1052.17012 MR 2041900 · Zbl 1052.17012 · doi:10.1016/S0001-8708(03)00088-4 [45] Scheithauer, N. R.: On the classification of automorphic products and generalized Kac-Moody algebras. Invent. Math. 164, 641-678 (2006) Zbl 1152.11019 MR 2221135 · Zbl 1152.11019 · doi:10.1007/s00222-006-0500-5 [46] Scheithauer, N. R.: Automorphic products of singular weight. Compos. Math. 153, 1855-1892 (2017) Zbl 1415.11073 MR 3705279 · Zbl 1415.11073 · doi:10.1112/S0010437X17007266 [47] Vinberg, È. B.: The unimodular integral quadratic forms. Funktsional. Anal. i Prilozhen. 6, no. 2, 24-31 (1972) (in Russian); English transl.: Funct. Anal. Appl. 6, 105-111 (1972) Zbl 0252.10027 MR 0299557 · Zbl 0252.10027 [48] Vinberg, È. B.: Classification of 2-reflective hyperbolic lattices of rank 4. Trudy Moskov. Mat. Obshch. 68, 44-76 (2007) (in Russian); English transl.: Trans. Moscow Math. Soc. 68, 39-66 (2007) Zbl 1207.11073 MR 2429266 · Zbl 1207.11073 · doi:10.1090/s0077-1554-07-00160-4 [49] Wang, H.: Reflective modular forms: a Jacobi forms approach. Int. Math. Res. Notices 2021, 2081-2107 Zbl 1487.11041 MR 4206605 · Zbl 1487.11041 · doi:10.1093/imrn/rnz070 [50] Wang, H.: Weyl invariant Jacobi forms: a new approach. Adv. Math. 384, art. 107752, 13 pp. (2021) Zbl 1475.11089 MR 4246102 · Zbl 1475.11089 · doi:10.1016/j.aim.2021.107752 [51] Wirthmüller, K.: Root systems and Jacobi forms. Compos. Math. 82, 293-354 (1992) Zbl 0780.17006 MR 1163219 · Zbl 0780.17006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.