Kida, Yuji Cyclotomic Z//2-extensions of J-fields. (English) Zbl 0493.12015 J. Number Theory 14, 340-352 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 17 Documents MSC: 11R37 Class field theory 11R80 Totally real fields 11R18 Cyclotomic extensions Keywords:cyclotomic extensions; totally real number field; CM-field; 2-extension of J-field; Iwasawa invariants Citations:Zbl 0463.12002; Zbl 0408.12006; Zbl 0455.12007 PDF BibTeX XML Cite \textit{Y. Kida}, J. Number Theory 14, 340--352 (1982; Zbl 0493.12015) Full Text: DOI OpenURL References: [1] Cassels, J.W.S.; Frölich, A., () [2] Ferrero, B., Iwasawa invariants of abelian number fields, Math. ann., 234, 9-24, (1978) · Zbl 0347.12004 [3] Ferrero, B., The cyclotomic Z2-extension of imaginary quadratic fields, Amer. J. math., 102, 447-459, (1980) · Zbl 0463.12002 [4] Gold, R., The nontriviality of certain zl-extensions, J. number theory, 6, 369-373, (1974) · Zbl 0288.12004 [5] Gras, G., Sur LES l-classes d’ideaux dans LES extensions cycliques relatives de degré premier l, Ann. inst. Fourier (Grenoble), 23, 1-48, (1973) · Zbl 0276.12013 [6] {\scG. Gras}, Module de torsion de la p-extension abelienne p-ramifiee maximal d’un corps abelien reel et fonction Lp-adiques, to appear. [7] Greenberg, R., On the Iwasawa invariants of totally real number fields, Amer. J. math., 98, 263-284, (1976) · Zbl 0334.12013 [8] Greenberg, R., On 2-adic L-functions and cyclotomic invariants, Math. Z., 159, 37-45, (1978) · Zbl 0354.12014 [9] Hasse, H., Über die klassenzahl abelscher zahlkörper, (1952), Akademie-Verlag Berlin · Zbl 0063.01966 [10] Iwasawa, K., On the μ-invariants of zl-extensions, (), 1-11 [11] Iwasawa, K., On zl-extensions of algebraic number fields, Ann. of math., 98, 246-326, (1973) · Zbl 0285.12008 [12] Kida, Y., On cyclotomic Z2-extensions of imaginary quadratic fields, Tôhoku math. J., 31, 91-96, (1979) · Zbl 0408.12006 [13] Kida, Y., l-extensions of CM-fields and cyclotomic invariants, J. number theory, 12, 519-528, (1980) · Zbl 0455.12007 [14] Washington, L.C., Class numbers and zp-extensions, Math. ann., 214, 177-193, (1975) · Zbl 0302.12007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.