zbMATH — the first resource for mathematics

Skolem-Noether algebras. (English) Zbl 1439.16016
Summary: An algebra \(S\) is called a Skolem-Noether algebra (SN algebra for short) if for every central simple algebra \(R\), every homomorphism \(R \rightarrow R \otimes S\) extends to an inner automorphism of \(R \otimes S\). One of the important properties of such an algebra is that each automorphism of a matrix algebra over \(S\) is the composition of an inner automorphism with an automorphism of \(S\). The bulk of the paper is devoted to finding properties and examples of SN algebras. The classical Skolem-Noether theorem implies that every central simple algebra is SN. In this article it is shown that actually so is every semilocal, and hence every finite-dimensional algebra. Not every domain is SN, but, for instance, unique factorization domains, polynomial algebras and free algebras are. Further, an algebra \(S\) is SN if and only if the power series algebra \(S [[\xi]]\) is SN.

16K20 Finite-dimensional division rings
16W20 Automorphisms and endomorphisms
16L30 Noncommutative local and semilocal rings, perfect rings
16U10 Integral domains (associative rings and algebras)
Full Text: DOI
[1] Benkart, G. M.; Osborn, J. M., Derivations and automorphisms of nonassociative matrix algebras, Trans. Amer. Math. Soc., 263, 411-430, (1981) · Zbl 0453.16020
[2] Brešar, M., Introduction to noncommutative algebra, Universitext, (2014), Springer · Zbl 1334.16001
[3] Brešar, M., Derivations of tensor products of nonassociative algebras, Linear Algebra Appl., 530, 244-252, (2017) · Zbl 1368.17002
[4] Bunce, J. W., Automorphisms and tensor products of algebras, Proc. Amer. Math. Soc., 44, 93-95, (1974) · Zbl 0257.46090
[5] Cohn, P. M., Free ideal rings and localization in general rings, New Mathematical Monographs, vol. 3, (2006), Cambridge University Press Cambridge · Zbl 1114.16001
[6] Effros, E. G.; Rosenberg, J., \(C^\ast\)-algebras with approximately inner flip, Pacific J. Math., 77, 417-443, (1978) · Zbl 0412.46052
[7] Gille, P.; Szamuely, T., Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, (2006), Cambridge University Press · Zbl 1137.12001
[8] Herstein, I. N., Noncommutative rings, Carus Math. Monogr., vol. 15, (1968), The Mathematical Association of America · Zbl 0177.05801
[9] Isaacs, I. M., Automorphisms of matrix algebras over commutative rings, Linear Algebra Appl., 31, 215-231, (1980) · Zbl 0434.16015
[10] Izumi, M., The K-theory of the flip automorphisms, preprint
[11] Jung, H. W.E., Über ganze birationale transformationen der ebene, J. Reine Angew. Math., 184, 161-174, (1942) · JFM 68.0382.01
[12] Kovacs, A., Homomorphisms of matrix rings into matrix rings, Pacific J. Math., 49, 161-170, (1973) · Zbl 0275.16019
[13] Lam, T. Y., A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, (2001), Springer · Zbl 0980.16001
[14] Montgomery, S., Von Neumann finiteness of tensor products of algebras, Comm. Algebra, 11, 595-610, (1983) · Zbl 0488.16015
[15] Quillen, D., Projective modules over polynomial rings, Invent. Math., 36, 167-171, (1976) · Zbl 0337.13011
[16] Rosenberg, A.; Zelinsky, D., Automorphisms of separable algebras, Pacific J. Math., 11, 1109-1117, (1961) · Zbl 0116.02501
[17] Sakai, S., Automorphisms and tensor products of operator algebras, Amer. J. Math., 97, 889-896, (1975) · Zbl 0321.46052
[18] Suslin, A., Projective modules over polynomial rings are free, Dokl. Akad. Nauk SSSR, 229, 5, 1063-1066, (1976), (Russian)
[19] Shestakov, I. P.; Umirbaev, U. U., The Nagata automorphism is wild, Proc. Natl. Acad. Sci. USA, 100, 12561-12563, (2003) · Zbl 1065.13010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.