Rotthaus, Christel Excellent rings, Henselian rings and the approximation property. (English) Zbl 0881.13009 Rocky Mt. J. Math. 27, No. 1, 317-334 (1997). The author gives an overview on excellent rings, Henselian rings and the property of approximation. As an application she describes a solution of the Bass-Quillen conjecture obtained by Popescu and Spivakovsky. After M. Artin’s approximation theorem, the central result in the theory of excellent Henselian rings was proved by D. Popescu [Nagoya Math. J. 100, 97-126 (1985; Zbl 0561.14008) and 104, 85-115 (1986; Zbl 0592.14014)]: An excellent Henselian ring has the property of (Artin) approximation. This is a consequence of Popescu’s more general result: A morphism between two Noetherian rings is regular if and only if it is a filtered inductive limit of smooth finite type morphisms. At least after M. Spivakovsky’s paper [“Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture” (preprint 1993)] Popescu’s result and the validity of his proof was established in the mathematical community. It seems that the author completely ignores this fact and knows only her own proof for a special case which appeared 1987. From this point of view the paper suggests a wrong picture. Reviewer: G.Pfister (Kaiserslautern) Cited in 9 Documents MSC: 13F40 Excellent rings 13J15 Henselian rings 14B12 Local deformation theory, Artin approximation, etc. 13J10 Complete rings, completion Keywords:excellent rings; Henselian rings; approximation Citations:Zbl 0575.14010; Zbl 0598.14012; Zbl 0561.14008; Zbl 0592.14014 PDF BibTeX XML Cite \textit{C. Rotthaus}, Rocky Mt. J. Math. 27, No. 1, 317--334 (1997; Zbl 0881.13009) Full Text: DOI Link References: [1] M. André, Cinq exposés sur ka désingularisation , [2] M. Artin, Algebraic approximation of structures over complete local rings , Publ. Math. Inst. Hautes Etud. Sci. 36 (1969), 23-58. · Zbl 0181.48802 [3] ——–, Algebraic structure of power series rings , Contemp. Math. 13 (1982), 223-227. · Zbl 0528.13021 [4] J. Ax, On Schanuel’s conjectures , Ann. Math. 93 (1971), 252-263. JSTOR: · Zbl 0232.10026 [5] J. Becker, J. Denef and L. Lipshitz, The approximation property for some five-dimensional rings , Trans. Amer. Math. Soc. 276 (1983), 301-309. JSTOR: · Zbl 0531.14004 [6] M. Brodmann and C. Rotthaus, Üeber den regulären Ort in ausgezeichneten Ringen , Math. Z. 175 (1980), 81-85. · Zbl 0419.13008 [7] A. Grothendieck and J. Dieudonne, Élements de géometrie algébrique , Publ. Math. Inst. Hautes Etud. Sci. 20 , 1964. [8] ——–, Élements de géometrie de algébrique , Publ. Math. Inst. Hautes Etud. Sci. 24 , 1965. [9] ——–, Élements de géometrie algébrique , Publ. Math. Inst. Hautes Etud. Sci. 32 , 1967. [10] R. Hartshorne, Algebraic geometry , Springer Verlag, New York, 1977. · Zbl 0367.14001 [11] H. Hironaka, The resolution of singularities of an algebraic variety over a field of characteristic \(0\) , I-II, Ann. Math. 79 (1964), 109-236. JSTOR: · Zbl 0122.38603 [12] B. Iversen, Generic local structure of the morphisms in commutative algebra , Springer Verlag, New York, 1973. · Zbl 0247.13001 [13] H. Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings , Invent. Math. 65 (1981), 319-323. · Zbl 0477.13006 [14] H. Matsumura, Commutative ring theory , vol. 8, Cambridge University Press, 1989. · Zbl 0666.13002 [15] M. Nagata, Local rings , Wiley, New York, 1962. · Zbl 0123.03402 [16] T. Ogoma, General Néron desingularization based on an idea of Popescu , J. Algebra 167 (1994), 57-84. · Zbl 0821.13003 [17] D. Popescu, General Néron desingularization , Nagoya Math. J. 100 (1985), 97-126. · Zbl 0561.14008 [18] ——–, General Néron desingularization and approximation , Nagoya Math. J. 104 (1986), 85-115. · Zbl 0592.14014 [19] D. Quillen, Projective modules over polynomial rings , Invent. Math. 36 (1976), 167-171. · Zbl 0337.13011 [20] M. Raynaud, Anneaux locaux Henséliens , Lecture Notes in Math. 169 , 1970. · Zbl 0203.05102 [21] C. Rotthaus, Komplettierung semilokaler quasiausgezeichneter Ringe , Nagoya Math. J. 76 (1979), 173-180. · Zbl 0388.13014 [22] ——–, Zur Komplettierung ausgezeichneter Ringe , Math. Ann. 253 (1980), 213-226. · Zbl 0444.13007 [23] ——–, On the approximation property of excellent rings , Invent. Math. 88 (1987), 39-63. · Zbl 0614.13014 [24] ——–, Rings with approximation property , Math. Ann. 287 (1990), 455-466. · Zbl 0702.13007 [25] M. Spivakovsky, Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture , [26] A. Suslin, Projective modules over a polynomial ring are free , Dokl. Akad. Nauk S.S.S.R. 229 (1976), Soviet Math. Dokl. 17 , (1976), 1160-1164. · Zbl 0354.13010 [27] P. Valabrega, A few theorems on completion of excellent rings , Nagoya Math. J. 61 (1976), 127-133. · Zbl 0319.13008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.