×

zbMATH — the first resource for mathematics

Generalized Schur functions and generalized decomposable symmetric tensors. (English) Zbl 0894.15015
The author investigates the properties of generalized Schur functions and conditions for two generalized decomposable symmetric tensors to be equal. The analogue of replacing generalized Schur functions by generalized trace functions is also considered.
Reviewer: V.L.Popov (Moskva)

MSC:
15A72 Vector and tensor algebra, theory of invariants
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chan, C.F., Positive semi-definiteness in the complex group algebra, Linear and multilinear algebra, 27, 189-198, (1990) · Zbl 0762.20001
[2] Gong, M.-P., Generalized symmetric tensors and related topics, Linear algebra appl., 236, 113-129, (1996) · Zbl 0846.15012
[3] Marcus, M., On two classical results of I. Schur, Bull. amer. math. soc., 70, 685-688, (1964) · Zbl 0263.15004
[4] Marcus, M.; Minc, H., Generalized matrix functions, Trans. amer. math. soc., 116, 316-329, (1965) · Zbl 0178.35902
[5] Marcus, M.; Nikolai, P., Inequalities for some monotone matrix functions, Canad. J. math., 21, 485-494, (1969) · Zbl 0196.05703
[6] Merris, R., Equality of decomposable symmetrized tensors, Canad. J. math., 27, 1022-1024, (1975) · Zbl 0323.15007
[7] Merris, R., Trace functions. I, Duke math. J., 38, 527-530, (1971) · Zbl 0223.15017
[8] Merris, R., Inequalities for matrix functions, J. algebra, 22, 451-460, (1972) · Zbl 0246.15019
[9] Merris, R.; Dias da Silva, J.A., Generalized Schur functions, J. algebra, 35, 442-448, (1975) · Zbl 0309.15006
[10] de Oliveira, G.N.; Santana, Ana P.; Dias da Silva, J.A., Note on the equality of start products, Linear and multilinear algebra, 14, 157-163, (1983) · Zbl 0521.15019
[11] de Oliveira, G.N.; Dias da Silva, J.A., Conditions for equality of decomposable symmetric tensors. II, Linear algebra appl., 28, 161-176, (1979) · Zbl 0443.15014
[12] de Oliveira, G.N.; Dias da Silva, J.A., Equality of decomposable symmetrized tensors and ^∗-matrix groups, Linear algebra appl., 49, 191-219, (1983) · Zbl 0526.15020
[13] Dias da Silva, J.A., Conditions for equality of decomposable symmetric tensors, Linear algebra appl., 24, 85-92, (1979) · Zbl 0413.15013
[14] Dias da Silva, J.A., On the Schur inequality, Linear and multilinear algebra, 7, 343-357, (1979) · Zbl 0432.15017
[15] Schur, I., Über endliche gruppen und hermitesche formen, Math. Z., 1, 184-207, (1918) · JFM 46.0174.03
[16] Watkins, W., Convex matrix functions, (), 31-34 · Zbl 0257.15004
[17] Williamson, S.G., Some remarks on a class of matrix inequalities, (), 673-677 · Zbl 0159.32202
[18] Williamson, S.G., Tensor contraction and Hermitian forms, Linear algebra appl., 2, 335-347, (1969) · Zbl 0264.15013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.