Darafsheh, M. R.; Pournaki, M. R. On the orthogonal basis of the symmetry classes of tensors associated with the dicyclic group. (English) Zbl 0964.20006 Linear Multilinear Algebra 47, No. 2, 137-149 (2000). The authors give a necessary and sufficient condition for the existence of orthogonal bases of decomposable symmetrized tensors for the symmetry classes of tensors associated with the dicylic group. In particular, those conditions are applied to the generalized quaternion group, for which the dimensions of the symmetry classes of tensors are computed. Reviewer: A.Khammash (Makkah) Cited in 1 ReviewCited in 9 Documents MSC: 20C30 Representations of finite symmetric groups 15A69 Multilinear algebra, tensor calculus Keywords:orthogonal bases; decomposable symmetrized tensors; symmetry classes of tensors; dicylic groups; generalized quaternion groups PDF BibTeX XML Cite \textit{M. R. Darafsheh} and \textit{M. R. Pournaki}, Linear Multilinear Algebra 47, No. 2, 137--149 (2000; Zbl 0964.20006) Full Text: DOI References: [1] Coxeter H. S. M., Generators and relations for discrete groups (1972) · Zbl 0239.20040 [2] DOI: 10.1016/S0024-3795(73)80004-7 · Zbl 0283.15004 · doi:10.1016/S0024-3795(73)80004-7 [3] DOI: 10.1080/03081089208818144 · Zbl 0762.15015 · doi:10.1080/03081089208818144 [4] James G., ”Representations and Characters of Groups” (1993) · Zbl 0792.20006 [5] Marcus M., ”Finite Dimensional Multilinear Algebra” (1973) · Zbl 0284.15024 [6] DOI: 10.1080/03081088608817710 · Zbl 0591.15020 · doi:10.1080/03081088608817710 [7] Merris R., ”Multilinear Algebra” (1997) · Zbl 0892.15020 [8] Serre J. P., ”A Course in Arithmetic” (1973) · Zbl 0256.12001 [9] DOI: 10.1080/03081089108818088 · Zbl 0735.15022 · doi:10.1080/03081089108818088 [10] DOI: 10.1080/03081089108818102 · Zbl 0751.15013 · doi:10.1080/03081089108818102 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.