El-Zekey, Moataz; Novák, Vilém; Mesiar, Radko On good EQ-algebras. (English) Zbl 1242.03089 Fuzzy Sets Syst. 178, No. 1, 1-23 (2011). In this paper the authors investigate new properties of EQ-algebras and their special case of good EQ-algebras.EQ-algebras have been introduced by Vilém Novák and they have three binary operations, meet, multiplication and fuzzy equality, and a unit element. The motivation of introducing these algebras is the development of fuzzy logic with the basic connective being a fuzzy equality instead of an implication. The notions of prefilter and filters are introduced and studied and good EQ-algebras are defined. In particular, it is shown that \(\{\rightarrow, 1\}\)-reducts of good EQ-algebras are BCK-algebras. The good EQ-algebras are enriched with a unary operation \(\Delta\), called Baaz delta, fulfilling some additional assumptions. A characterization theorem for the representable good EQ-algebras is also proved for the enriched algebra.The main results of the paper are the following: 1. The class of EQ-algebras is a variety. 2. The \(\{\rightarrow, 1\}\)-reducts of good EQ-algebras are BCK-meet-semilattices. 3. If \({\mathcal E}=(E, \wedge, \otimes, \sim, 1)\) is a residuated EQ-algebra, then its multiplication \(\otimes\) is commutative and \({\mathcal E}'=(E, \wedge, \otimes, \rightarrow, 1)\) is a commutative residuated lattice, where \(a\rightarrow b=(a\wedge b)\sim a\). 4. If \({\mathcal E}_{\Delta}\) is an EQ-algebra, then the following are equivalent: (a) \({\mathcal E}_{\Delta}\) is representable; (b) \({\mathcal E}_{\Delta}\) satisfies \((a\rightarrow b)\rightarrow u\leq [(d\rightarrow (d\otimes (c\rightarrow ((b\rightarrow a)\otimes c))))\rightarrow u] \rightarrow u\); (c) \({\mathcal E}_{\Delta}\) satisfies \((d\rightarrow (d\otimes (c\rightarrow ((b\rightarrow a)\otimes c))))\rightarrow u \leq ((a\rightarrow b)\rightarrow u)\rightarrow u\); (d) \({\mathcal E}_{\Delta}\) is prelinear and every minimal prime prefilter of \({\mathcal E}_{\Delta}\) is a filter of \({\mathcal E}_{\Delta}\). We conclude that the paper under review contains very interesting results and can be a starting point for future studies. Reviewer: Lavinia Ciungu (Craiova) Cited in 24 Documents MSC: 03G25 Other algebras related to logic 03B52 Fuzzy logic; logic of vagueness 06F35 BCK-algebras, BCI-algebras Keywords:EQ-algebras; fuzzy equality; fuzzy logic; residuated lattice; BCK-algebra; representable algebra Software:ETPS PDF BibTeX XML Cite \textit{M. El-Zekey} et al., Fuzzy Sets Syst. 178, No. 1, 1--23 (2011; Zbl 1242.03089) Full Text: DOI References: [1] Abdel-Hamid, A.; Morsi, N., Associatively tied implications, Fuzzy Sets and Systems, 136, 291-311 (2003) · Zbl 1042.03021 [2] Abdel-Hamid, A.; Morsi, N., Representation of prelinear residuated algebras, International Journal of Computational Cognition, 5, 4, 13-20 (2007) [3] Alten, C. V., Representable biresiduated lattices, Journal of Algebra, 247, 672-691 (2002) · Zbl 1001.06012 [4] Andrews, P., An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2002), Kluwer: Kluwer Dordrecht · Zbl 1002.03002 [5] Baaz, M., Infinite-valued Gödel logic with 0-1-projections and relativisations, (Hájek, P., Gödel’96: Logical Foundations of Mathematics, Computer Science, and Physics, Lecture Notes in Logic, vol. 6 (1996), Springer-Verlag: Springer-Verlag Brno), 23-33 · Zbl 0862.03015 [6] Blyth, T., Lattices and Ordered Algebraic Structures (2005), Springer: Springer London · Zbl 1073.06001 [7] Bodenhofer, U., A similarity-based generalization of fuzzy orderings preserving the classical axioms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8, 593-610 (2000) · Zbl 1113.03333 [8] Burris, S.; Sankappanavar, H., A Course in Universal Algebra (Graduate Texts in Mathematics), vol. 78 (1981), Springer-Verlag · Zbl 0478.08001 [9] Castañeda, H., Leibniz’s syllogistico-propositional calculus, Notre Dame Journal of Formal Logic, XVII, 4, 338-384 (1976) · Zbl 0314.02004 [10] Cintula, P., Weakly implicative logics I: basic properties, Archive of Mathematical Logic, 45, 6, 673-704 (2006) · Zbl 1101.03015 [11] Di Nola, A.; Georgescu, G.; Iorgulescu, A., Pseudo-BL algebras I, II, Multiple-Valued Logic, 8, 5-6, 673-714 (2002), and 717-750 · Zbl 1028.06007 [12] Durante, F.; Klement, E.; Mesiar, R.; Sempi, C., Conjunctors and their residual implicators: characterizations and construction methods, Mediterranean Journal of Mathematics, 4, 343-356 (2007) · Zbl 1139.03014 [13] El-Zekey, M., Representable good EQ-algebras, Soft Computing, 14, 9, 1011-1023 (2010) · Zbl 1201.03061 [14] Esteva, F.; Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124, 271-288 (2001) · Zbl 0994.03017 [15] Fleischer, I., Every BCK-algebras is a set of residuables in an integral pomonoid, Journal of Algebra, 119, 360-365 (1988) · Zbl 0658.06012 [16] Flondor, P.; Georgescu, G.; Iorgulescu, A., Pseudo-t-norms and pseudo-BL algebras, Soft Computing, 5, 355-371 (2001) · Zbl 0995.03048 [17] Fodor, J., Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems, 69, 141-156 (1995) · Zbl 0845.03007 [18] Galatos, N.; Jipsen, P.; Kowalski, T.; Ono, H., Residuated Lattices. An Algebraic Glimpse at Substructural Logics (2007), Elsevier: Elsevier Amsterdam · Zbl 1171.03001 [19] Georgescu, G.; Popescu, A., Non-commutative fuzzy structures and pairs of weak negations, Fuzzy Sets and Systems, 143, 129-155 (2004) · Zbl 1036.06007 [20] Gispert, J.; Torrens, A., Bounded BCK-algebras and their generated variety, Mathematical Logic Quarterly, 53, 206-213 (2007) · Zbl 1123.06010 [21] Gottwald, S., A Treatise on Many-Valued Logics (2001), Research Studies Press Ltd.: Research Studies Press Ltd. Baldock, Herfordshire · Zbl 1048.03002 [22] Gottwald, S.; Hájek, P., Triangular norm-based mathematical fuzzy logics, (Klement, E.; Mesiar, R., Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (2005), Elsevier: Elsevier Amsterdam), 257-299 · Zbl 1078.03020 [23] Hájek, P., Metamathematics of Fuzzy Logic (1998), Kluwer: Kluwer Dordrecht · Zbl 0937.03030 [24] Hájek, P., Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation, 13, 469-479 (2003) · Zbl 1036.03018 [25] Hájek, P., Observations on non-commutative fuzzy logic, Soft Computing, 8, 38-43 (2003) · Zbl 1075.03009 [26] Hájek, P.; Mesiar, R., On copulas, quasicopulas and fuzzy logic, Soft Computing, 12, 1239-1243 (2008) · Zbl 1152.03018 [27] Höhle, U., Commutative residuated l-monoids, (Höhle, U.; Klement, E. P., Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory (1995), Kluwer: Kluwer Dordrecht), 53-106 · Zbl 0838.06012 [28] Iseki, K., An introduction of the theory of BCK-algebras, Mathematica Japonica, 23, 1-26 (1978) · Zbl 0385.03051 [29] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer: Kluwer Dordrecht · Zbl 0972.03002 [30] Monteiro, A. A., Algebrés de heyting symétriques, Portugaliae Mathematica, 39, 4, 1-239 (1980) · Zbl 0582.06012 [31] Morsi, N., Propositional calculus under adjointness, Fuzzy Sets and Systems, 132, 91-106 (2002) · Zbl 1029.03012 [32] Morsi, N.; Lotfallah, W.; El-Zekey, M., The logic of tied implications, part 1: properties, applications and representation, Fuzzy Sets and Systems, 157, 5, 647-669 (2006) · Zbl 1106.03020 [33] Morsi, N.; Lotfallah, W.; El-Zekey, M., The logic of tied implications, part 2: syntax, Fuzzy Sets and Systems, 157, 15, 2030-2057 (2006), (corrigendum in: Fuzzy Sets and Systems 157 (17) (2006) 2416-2417) · Zbl 1111.03033 [34] Morsi, N.; Mohammed, E.; El-Zekey, M., Propositional calculus for adjointness lattices, Mathware Soft Computing, 9, 5-23 (2002) · Zbl 1024.68067 [35] Morsi, N.; Roshdy, E., Issues on adjointness in multiple-valued logics, Information Sciences, 176, 19, 2886-2909 (2006) · Zbl 1107.03023 [36] Novák, V., EQ-algebra-based fuzzy type theory and its extensions, Logic Journal of the IGPL, 19, 512-542 (2011), doi:10.1093/jigpal/jzp087 · Zbl 1243.03034 [37] Novák, V., On fuzzy type theory, Fuzzy Sets and Systems, 149, 235-273 (2005) · Zbl 1068.03019 [39] Novák, V.; De Baets, B., EQ-algebras, Fuzzy Sets and Systems, 160, 2956-2978 (2009) · Zbl 1184.03067 [41] Novák, V.; Perfilieva, I.; Močkoř, J., Mathematical Principles of Fuzzy Logic (1999), Kluwer: Kluwer Boston · Zbl 0940.03028 [42] Ono, H.; Komori, Y., Logics without the contraction rule, Journal of Symbolic Logic, 50, 169-201 (1985) · Zbl 0583.03018 [43] Pałasinski, M., Some remarks on BCK-algebras, Mathematics Seminar Notes Kobe University, 8, 137-144 (1980) · Zbl 0435.03048 [44] Pałasinski, M., On ideal and congruence lattices of BCK-algebras, Math. Jpn., 26, 543-544 (1981) · Zbl 0476.03064 [45] Raftery, J. G., On prime ideals and subdirect decompositions of BCK-algebras, Math. Jpn., 32, 811-818 (1987) · Zbl 0636.03061 [46] Restall, G., An Introduction to Substructural Logics (2000), Routledge: Routledge New York · Zbl 1028.03018 [47] Sainio, E.; Turunen, E.; Mesiar, R., A characterization of fuzzy implications generated by generalized quantifiers, Fuzzy Sets and Systems, 159, 4, 491-499 (2008) · Zbl 1176.03013 [48] Takeuti, G.; Titani, S., Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, Journal of Symbolic Logic, 49, 3, 851-866 (1984) · Zbl 0575.03015 [49] Tourlakis, G., Mathematical Logic (2008), New York: New York John Wiley & Sons · Zbl 1155.03001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.